

федеральное государственное бюджетное образовательное учреждение высшего образования

«Нижегородский государственный технический университет им.Р.Е.Алексеева»

Программа кандидатского экзамена

Факультет подготовки специалистов высшей квалификации

УТВЕРЖДАЮ Проректор по научной работе

А.А. Куркин

«14» марта 2022 г

Кафедра «Аэро-гидродинамика, прочность машин и сопротивление материалов»

ПРОГРАММА КАНДИДАТСКОГО ЭКЗАМЕНА

ПО СПЕЦИАЛЬНОСТИ 1.1.8 «МЕХАНИКА ДЕФОРМИРУЕМОГО ТВЕРДОГО ТЕЛА»

Область науки:

1. Естественные науки

Группа научных специальностей:

1.1. Математика и механика

Наименование отрасли науки, по которой присуждаются ученые степени:

технические науки

Научная специальность:

1.1.8. Механика деформируемого твердого тела

Нижний Новгород 2022

федеральное государственное бюджетное образовательное учреждение высшего образования

«Нижегородский государственный технический университет им.Р.Е.Алексеева»

Программа кандидатского экзамена

Факультет подготовки специалистов высшей квалификации

Программа предназначена для методического сопровождения процесса подготовки аспирантов (соискателей) к сдаче кандидатского экзамена по специальности 1.1.8 «Механика деформируемого твердого тела».

Программа составлена в соответствии с требованиями следующих нормативных документов:

- 1. Федеральные государственные требования к структуре программ подготовки научных и научно-педагогических кадров в аспирантуре - приказ Минобрнауки России от 20.10.2021 г. № 951.
- 2. Паспорт научной специальности 1.1.8 «Механика деформируемого твердого тела», разработанный экспертами ВАК Минобрнауки России в рамках Номенклатуры научных специальностей, утвержденной приказом Минобрнауки России от 24.02.2021 г. № 118.
- 3. Учебный план НГТУ по программе подготовки научных и научно-педагогических кадров в аспирантуре по научной специальности 1.1.8 «Механика деформируемого твердого тела».

РЕКОМЕНДОВАНА кафедрой «Аэро-гидродинамика, прочность машин и сопротивление материалов» (АГДПМиСМ)					
протокол № 6 от " 11 " марта 2022г.					
Заведующий кафедрой «ЭПА»					
д.фм.н. Герасимов С.И. расшифровка подписи					
СОГЛАСОВАНО:					
И.о. декана факультета подготовки специалистов высшей квалификации					
Трубочкина Е.Л. «14» марта 2022 г.					
личная подпись расшифровка подписи дата					

КЭ:

УЭ№

Стр. 2 из 11

Без подписи документ действителен 3 суток после распечатки. Дата

Версия: 1.0

федеральное государственное бюджетное образовательное учреждение высшего образования

«Нижегородский государственный технический университет им.Р.Е.Алексеева»

Программа кандидатского экзамена

Факультет подготовки специалистов высшей квалификации

СОДЕРЖАНИЕ

1	Общие положения	4
2	Основная программа кандидатского экзамена по специальности 1.1.8	
	«Механика деформируемого твердого тела»	4
3	Дополнительная программа	7
	Приложение. Пример оформления дополнительной программы	8

федеральное государственное бюджетное образовательное учреждение высшего образования

«Нижегородский государственный технический университет им.Р.Е.Алексеева»

Программа кандидатского экзамена

Факультет подготовки специалистов высшей квалификации

1 Общие положения

Программа кандидатского экзамена по специальности состоит из двух частей:

- 1) основная программа по специальности, разработанная в соответствии с паспортом научной специальности 1.1.8 «Механика деформируемого твердого тела»;
 - 2) дополнительная программы, разрабатываемая аспирантом (соискателем).

Экзаменационные билеты должны включать 2-3 вопроса из основной программы и 1-2 вопроса из дополнительной программы.

2 Основная программа кандидатского экзамена по специальности 1.1.8 «Механика деформируемого твердого тела»

Программа составлена в соответствии с паспортом специальности 1.1.8 «Механика деформируемого твердого тела», с опорой на дисциплины, связанные с задачами динамики, волновых процессов, накопления повреждений, прочности, механики разрушения и вычислительной механики деформируемого твёрдого тела.

2.1 Теория упругости

Тензоры напряжений и деформаций. Уравнения равновесия. Определение перемещений по деформациям. Уравнения совместности деформаций. Потенциальная энергия деформации. Закон Гука для изотропного и анизотропного тела.

Полная система уравнений теории упругости. Уравнения Бельтрами-Митчела. Уравнения в перемещениях. Постановка основных задач теории упругости. Прямой, обратный и полуобратный методы решения задач теории упругости. Принцип Сен-Венана. Вариационные принципы теории упругости. Принцип Лагранжа. Теорема Клапейрона. Теорема Бетти. Принцип Кастильяно. Вариационные методы решения задач теории упругости (Ритца, Бубнова-Галеркина, Треффца).

Основные задачи теории упругости. Плоская деформация и плоское напряженное состояние. Функция напряжений. Дифференциальные уравнения и краевые условия для функции напряжений. Методы решения задач теории упругости (с помощью тригонометрических рядов, интегральных преобразований, конечных разностей, конечных и граничных элементов). Применение теории функций комплексного переменного, формулы Колосова-Мусхелишвили. Кручение цилиндрических стержней.

Постановка пространственных и осесимметричных задач термоупругости.

федеральное государственное бюджетное образовательное учреждение высшего образования

«Нижегородский государственный технический университет им.Р.Е.Алексеева»

Программа кандидатского экзамена

СК-РП-15.1-04-22 Факультет подготовки специалистов высшей квалификации

2.2 Теория пластичности и ползучести

Модели упругопластического тела. Критерии текучести. Поверхность текучести. Ассоциированный закон течения. Теория течения в случае изотропного и анизотропного упрочнения. Деформационная теория. Сравнение теорий пластичности.

Постановка задач в теории упругопластического материала без упрочнения. Остаточные напряжения. Предельное состояние и предельная нагрузка. Определение верхней и нижней границ для предельной нагрузки. Приспособляемость. Простейшие задачи теории пластичности.

Гипотезы старения, упрочнения и наследственности в теории ползучести. Постановка и методы решения задач теории ползучести. Установившаяся ползучесть при изгибе.

2.3 Конструкционная прочность и элементы механики разрушения

Физические основы прочности материалов. Вязкий и хрупкий типы разрушения. Прочность при сложном напряженном состоянии. Усталостное разрушение, его физическая природа. Малоцикловая усталость. Длительная прочность. Статистические аспекты разрушения и масштабный эффект. Влияние концентрации напряжений на прочность.

Теория квазихрупкого разрушения. Напряжения вблизи трещины в упругом теле. Энергетический и силовой подходы в механике разрушения. Условия разрушения тел с трещинами. Условия устойчивости трещин. Критический коэффициент интенсивности напряжений. Учет пластических деформаций в конце трещины. Влияние температуры на сопротивление хрупкому разрушению. Закономерности роста усталостных трещин. Разрушения в условиях ползучести. Понятие о коррозионной усталости и коррозионном растрескивании.

2.4 Динамика упругих систем

Принцип Гамильтона-Остроградского для упругих систем. Уравнения продольных, крутильных и изгибных колебаний упругих стержней. Уравнения колебаний упругих пластин и оболочек.

Свойства собственных форм и частот колебаний упругих систем. Вариационные принципы в теории свободных колебаний. Методы определения собственных частот и форм колебаний упругих систем. Вынужденные колебания упругих систем. Колебания диссипативных систем.

федеральное государственное бюджетное образовательное учреждение высшего образования

«Нижегородский государственный технический университет им.Р.Е.Алексеева»

Программа кандидатского экзамена

Факультет подготовки специалистов высшей квалификации

Упругие волны в неограниченной упругой среде. Продольные и поперечные волны. Дисперсионные уравнения. Фазовая и групповая скорости. Поверхностные волны Релея. Волны Лява. Упругопластические волны.

2.5 Статистическая динамика и теория надежности

Задачи статистической динамики. Линейные системы и методы их анализа. Прохождение стационарного случайного процесса через стационарную линейную систему. Основные положения теории выбросов.

Надежность, основные понятия и показатели. Функции распределения времени до отказа. Надежность составных систем. Резервирование. Модель «нагрузка – несущая способность» при внезапных и постепенных отказах. Методы линеаризации и статистического моделирования в задачах надежности.

Показатели безопасности. Классификация рисков. Нормирование безопасности.

2.6 Вычислительная механика деформируемого твердого тела

Численные методы решения задач динамики и прочности. Разностные методы, вариационные методы. Метод конечных элементов. Метод граничных элементов. Интегрирование уравнений динамики. Решение нелинейных задач. Статистическое моделирование. Решение оптимизационных задач. Решение мультифизических и связанных задач.

Список литературы

- 1. Бате, К., Вильсон Е. Численные методы анализа и метод конечных элементов / К. Бате, Е.М.Вильсон. - Стройиздат, 1982. - 488 с.
- 2. Бенерджи, П. Метод граничных элементов в прикладных науках / П. Бенерджи, Р.М. Баттерфилд. - М.:Мир, 1984. - 494 с.
- 3. Бидерман, В. Л. Теория механических колебаний: Учебник для вузов / В.Л. Бидерман. - М.: Высш. школа, 1980. - 408 с.
- 4. Волков В.М. Надежность машин и тонкостенных конструкций: Учеб.пособие / В.М. Волков; НГТУ им.Р.Е.Алексеева. - Н.Новгород, 2011. - 365 с.
- 5. Зенкевич, О. Метод конечных элементов в технике / О Зенкевич. М.: Мир, 1975. – 541 c.
- 6. Зубчанинов, В.Г. Основы теории упругости и пластичности: Учеб. для машиностроит. спец. вузов / В.Г. Зубчанинов. - М.: Высш. шк., 1990. - 368 с.

Версия: 1.0	Без подписи документ действителен 3 суток после распечатки. Дата и время распечатки:	КЭ:	УЭ №	Стр. 6 из 11

федеральное государственное бюджетное образовательное учреждение высшего образования

«Нижегородский государственный технический университет им.Р.Е.Алексеева»

Программа кандидатского экзамена

СК-РП-15.1-04-22

Факультет подготовки специалистов высшей квалификации

- 7. Малинин, Н.Н. Прикладная теория пластичности и ползучести / Н.Н. Малинин. - М.: Издательство Юрайт, 2018. — 402 с.
- 8. Молотников, В. Я. Теория упругости и пластичности / В. Я. Молотников, А. А. Молотникова. — Санкт-Петербург: Лань, 2017. — 532 с. Лань: электроннобиблиотечная система. — URL: https://e.lanbook.com/book/94741
- 9. Основы механики сплошных сред: Механика деформируемого твердого тела: учеб. пособие / В.М. Волков [и др.]; Нижегород. гос. техн. ун-т им. Р.Е. Алексеева. Н. Новгород, 2016. - 105 с.
- 10. Пестриков В.М. Механика разрушения твердых тел: Курс лекций / В.М. Пестриков, Е.М. Морозов. - СПб. : Профессия, 2002. - 304 с.
- 11. Работнов, Ю.Н. Механика деформируемого твердого тела / Ю.Н. Работнов. М.: Наука, 1988. – 712 с.
- 12. Светлицкий, В.А. Статистическая механика и теория надежности: Учебник / В.А. Светлицкий. - 2-е изд., стер. - М.: Изд-во МГТУ им. Н.Э. Баумана, 2004. -504 c.

3 Дополнительная программа

Дополнительная программа, самостоятельно составляемая аспирантом (соискателем), включает в себя титульный лист, не менее 15 вопросов по теме диссертации и не менее 15 источников литературы. Дополнительная программа должна быть подписана научным руководителем и согласована с деканом факультета подготовки специалистов высшей квалификации. Пример оформления дополнительной программы приведен в Приложении.

федеральное государственное бюджетное образовательное учреждение высшего образования

«Нижегородский государственный технический университет им.Р.Е.Алексеева»

Программа кандидатского экзамена

Факультет подготовки специалистов высшей квалификации

ПРИЛОЖЕНИЕ

Пример оформления дополнительной программы

Минобрнауки России

федеральное государственное бюджетное образовательное учреждение высшего образования

Нижегородский государственный технический университет им. Р.Е. Алексеева

УТВЕРЖДАЮ						
Декан ФСВК						
Р.Ш. Бедретдинов						
« <u></u> »						

Дополнительная программа

к кандидатскому экзамену

по специальности 1.1.8 – Механика деформируемого твердого тела

Нижний Новгород 2022 г.

федеральное государственное бюджетное образовательное учреждение высшего образования

«Нижегородский государственный технический университет им.Р.Е.Алексеева»

Программа кандидатского экзамена

Факультет подготовки специалистов высшей квалификации

Дополнительная программа экзамена по специальности

- 1 Хрупкое, квазихрупкое, вязкое разрушение конструкций с трещинами
- 2. Критерии линейной и нелинейной механики разрушения.
- 3. Двухкритериальный подход к описанию разрушения конструкций с трещинами.
 - 4. Модели усталостного разрушения в концентраторах напряжений.
- 5. Влияние градиента напряжений и деформаций на накопление усталостных повреждений.
- 6. Особенности циклического пластического деформирования в концентраторах напряжений.
- 7 Модели накопления усталостных повреждений при малоцикловом деформировании
 - 8. Модели роста усталостных трещин.
 - 9. Модели определения траекторий развития сквозных усталостных трещин.
 - 10 Модели определения траекторий поверхностных и внутренних трещин.
- 11. Реализация расчета параметров механики разрушения в программных комплексах.
 - 12. Алгоритмы расчета траектории разрушения с использованием МКЭ.
- 13. Законы распределения начальных размеров дефектов несплошности в конструкциях.
 - 14. Модели надежности конструкций с усталостными трещинами.
- 15. Алгоритмы реализации методов расчета надежности конструкций с усталостными трещинами.

Министерство науки и высшего образования Российской Федерации федеральное государственное бюджетное образовательное учреждение высшего образования «Нижегородский государственный технический университет им.Р.Е.Алексеева» Программа кандидатского экзамена

СК-РП-15.1-04-22

Список литературы

Факультет подготовки специалистов высшей квалификации

- 1. Болотин, В. В. Прогнозирование ресурса машин и конструкций / В. В. Болотин. М.: Машиностроение, 1984. 312 с.
- 2. Варфоломеев, И. В. Критерии и устойчивые формы роста несквозных трещин при циклическом нагружении. Сообщение 1 / И. В. Варфоломеев, В. А. Вайншток, А. Я. Красовский // Проблемы прочности. 1990. № 8. С. 3-10.
- 3. Варфоломеев, И. В. Критерии и устойчивые формы роста несквозных трещин при циклическом нагружении. Сообщение 2 / И. В. Варфоломеев, В. А. Вайншток, А. Я. Красовский // Проблемы прочности. − 1990. − № 9. − С. 11-16.
- 4. Волков, В. М. Разрыхление металлов и разрушение конструкций машин / В. М. Волков // Вестн. Волжской гос. акад. водного транспорта. Надежность и ресурс в машиностроении. -2003. Вып. 4. С. 50—69.
- 5. Волков, В. М. Объединенная модель образования и роста усталостных трещин в концентраторах напряжений / В. М. Волков, А. А. Миронов // Проблемы прочности и пластичности: Межвуз. сб. Н. Новгород: Изд-во Нижегород. гос. ун-та, 2005. Вып. 67. С. 20–25.
- 6. Казаков, Д. А. Моделирование процессов деформирования и разрушения материалов и конструкций / Д. А. Казаков, С. А. Капустин, Ю. Г. Коротких. Н. Новгород:НГУ, 1999. 226 с.
- 7. Карзов, Г. П. Физико-механическое моделирование процессов разрушения / Г. П. Карзов, Б. З. Марголин, В. А. Швецова. СПб.:Политехника, 1993. 391 с.
- 8. Красовский, А. Я. Трещиностойкость сталей магистральных трубопроводов / А. Я. Красовский, В. Н. Красико. Киев: Наук. думка, 1990. 176 с.
- 9. Куркин, С. А. Модели развития разрушения от дефектов типа несплошностей при циклическом нагружении, основанные на методах механики разрушения / С. А. Куркин // Контроль. Диагностика. 1998. № 2. С. 17—20.
- 10. Лукьянов, В.Ф. Технологическая наследственность как фактор надежности сварных соединений / В. Ф. Лукьянов // Вестник ДГТУ / Ростов н/Д. -2005. T.5. №3 (25). C. 388-399.
- 11. Миронов, А. А. Анализ данных неразрушающего контроля с учетом их сто-хастичности / А. А. Миронов // Дефектоскопия. -2015. -№ 3. C. 45–50.
- 12. М-02-91. Методика определения допускаемых дефектов в металле оборудования и трубопроводов во время эксплуатации АЭС. М., 1991. 20 с.
- 13. О двухкритериальном подходе к оценке предельной несущей способности тела с трещиной / Красовский А. Я., Махутов Н. А., Орыняк И. В., Тороп В. М. // Проблемы машиностроения и автоматизации. − 1992. − № 4-5. − С. 92-100.
- 14. Острейковский, В. А. Теория надежности / В. А. Острейковский. М.: Высш. шк., 2003. 463 с.

Версия: 1.0	Без подписи документ действителен 3 суток после распечатки. Дата и время распечатки:	КЭ:	УЭ №	Стр. 10 из 11

федеральное государственное бюджетное образовательное учреждение высшего образования

«Нижегородский государственный технический университет им.Р.Е.Алексеева»

Программа кандидатского экзамена

СК-РП-15.1-04-22

Факультет подготовки специалистов высшей квалификации

- 15. Панасюк В. В. Зарождение усталостных трещин у концентраторов напряжений / В. В. Панасюк, О. П. Осташ, Е. М. Костык // ФХММ. 1985. №6. С. 3–10.
- 16. Плювинаж, Г. Механика упругопластического разрушения: [пер. с франц.] / Г. Плювинаж. М.: Мир, 1993. 450 с.
- 17. Прочность материалов и конструкций / Редкол.: В. Т. Трощенко (отв. ред.) [и др.]. Киев.: Академпериодика, 2005. 1088 с.
- 18. Райзер, В. Д. Теория надежности сооружений / В. Д. Райзер. М.: Изд-во ACB, 2010. 383 с.
- 19. Трощенко, В. Т. Деформационные кривые усталости сталей и методы определения их параметров / В. Т. Трощенко, Л. А. Хамаза // Проблемы прочности. 2010. № 6. С. 26-43.
- 20. Трощенко, В. Т. Усталость и неупругость металлов при неоднородном напряженном состоянии / В. Т. Трощенко // Проблемы прочности. -2010. -№ 5. -С. 14–30.
- 21. BS 7910:1999: Guide on methods for assessing the acceptability of flows in metallic structures. London: British Standards, 2000. 262 p.

Научный руководитель

д.т.н., профессор

Миронов А.А.