

федеральное государственное бюджетное образовательное учреждение высшего образования

«Нижегородский государственный технический университет им.Р.Е.Алексеева»

Программа кандидатского экзамена

Факультет подготовки специалистов высшей квалификации

УТВЕРЖДАЮ Проректор по научной работе

А.А. Куркин

«18» мая 2022 г

Кафедра «Машиностроительные технологические комплексы»

ПРОГРАММА КАНДИДАТСКОГО ЭКЗАМЕНА

ПО СПЕЦИАЛЬНОСТИ 2.6.4 «ОБРАБОТКА МЕТАЛЛОВ ДАВЛЕНИЕМ»

Область науки:

Группа научных специальностей:

Наименование отрасли науки, по которой присуждаются ученые степени:

Научная специальность

2. Технические науки

2.6 Химические технологии, науки о материалах, металлургия

технические науки

2.6.4 Обработка металлов давлением

Нижний Новгород 2022

федеральное государственное бюджетное образовательное учреждение высшего образования

«Нижегородский государственный технический университет им.Р.Е.Алексеева»

Программа кандидатского экзамена

Факультет подготовки специалистов высшей квалификации

Программа предназначена для методического сопровождения процесса подготовки аспирантов (соискателей) к сдаче кандидатского экзамена по специальности <u>2.6.4</u> Обработка металлов давлением.

Программа составлена в соответствии с требованиями следующих нормативных документов:

- 1. Федеральные государственные требования к структуре программ подготовки научных и научно-педагогических кадров в аспирантуре приказ Минобрнауки России от 20.10.2021 г. № 951.
- 2. Паспорт научной специальности <u>«2.6.4 Обработка металлов давлением»,</u> разработанный экспертами ВАК Минобрнауки России в рамках Номенклатуры научных специальностей, утвержденной приказом Минобрнауки России от 24.02.2021 г. № 118.
- 3. Учебный план НГТУ по программе подготовки научных и научнопедагогических кадров в аспирантуре по научной специальности <u>2.6.4 «Обработка</u> металлов давлением».

РЕКОМЕНДОВАНА кафедрой «Машиностроительные технологические комплексы» (МТК)

протокол № 5 от " 12" мая 2022г.

Заведующий кафедрой «МТК»

к.т.н, доц.__

Кузнецов С.В.

СОГЛАСОВАНО:

И.о. декана факультета подготовки специалистов высшей квалификации

личная подпись

Трубочкина Е.Л.

«18» мая 2022 г.

расшифровка

дат

федеральное государственное бюджетное образовательное учреждение высшего образования

«Нижегородский государственный технический университет им.Р.Е.Алексеева»

Программа кандидатского экзамена

Факультет подготовки специалистов высшей квалификации

СОДЕРЖАНИЕ

1	Общие положения	4
2	Программа кандидатского экзамена по специальности 2.6.4 «Обработка	
	металлов давлением»	4
3	Дополнительная программа	12
	Приложение. Пример оформления дополнительной программы	14

1 Общие положения

Программа кандидатского экзамена по специальной дисциплине состоит из двух частей:

- 1) основная программа по специальности, разработанной в соответствии с паспортом научной специальности 2.6.4 «Обработка металов давлением»;
 - 2) дополнительной программы, разрабатываемой аспирантом (соискателем).

Экзаменационные билеты должны включать 2-3 вопроса из основной программы и 1-2 вопроса из дополнительной программы.

2 Программа кандидатского экзамена по специальности 2.6.4 «Обработка металлов давлением»

Программа составлена в соответствии с паспортом специальности 2.6.4 «Обработка металлов давлением», с опорой на дисциплины, связанные с особенностями теории обработки металлов давлением,основами теории процессов обработки металлов давлением и технологий производства продукции методами обработки металлов давлением.

2.1 Теория обработки металлов давлением

Основные этапы и направления развития теории обработки металлов давлением.

Деформация сплошной среды. Переменные Лагранжа и Эйлера. Тензоры конечных деформаций. Тензор малой деформации. Девиатор деформации. Инвариантны тензора и девиатора деформации. Главные деформации, интенсивность деформаций сдвига.

Течение сплошной среды. Поле вектора скорости. Линии тока и траектории. Тензор и девиатор скорости деформации, их инварианты. Главные скорости деформации, интенсивность скоростей деформаций сдвига. Степень деформации сдвига. Функции тока. Уравнение неразрывности и несжимаемости.

Напряжения. Пластическое состояние. Напряженное состояние. Тензор напряжений, девиатор напряжений и их инварианты. Главные нормальные и касательные напряжения. Напряжения на наклонной площадке. Уравнения связи напряженного и деформированного состояний. Простейшие реологические модели. Условия пластичности. Краевая задача теории пластичности. Методы решения краевых задач.

Физические основы пластической деформации металлов и сплавов. Строение металлов. Анизотропия свойств монокристаллов. Дефекты кристаллического строения металлов. Пластическая деформация монокристаллов. Механизмы деформации.

Версия: 1.0	Без подписи документ действителен 3 суток после распечатки. Дата и время распечатки:	КЭ:	УЭ №	Стр. 4 из 16

федеральное государственное бюджетное образовательное учреждение высшего образования

«Нижегородский государственный технический университет им.Р.Е.Алексеева»

Программа кандидатского экзамена

СК-РП-15.1-04-22

Факультет подготовки специалистов высшей квалификации

Скольжение. Системы скольжения в кристаллах различного типа (ГЦК, ОЦК, ГПУ). Основы теории дислокаций. Пластическая деформация с позиций теории дислокашии.

Температурно-скоростные зависимости характеристик прочности и пластичности монокристаллов.

Пластическая деформация и разрушение поликристаллов. Особенности деформации поликристаллов. Неравномерность деформации. Механизмы деформации и упрочнения поликристаллов. Влияние холодной деформации на структуру и свойства поликристаллов.

Процессы, происходящие при нагреве наклепанного металла: возврат, полигонизация, рекристаллизация. Влияние нагрева на структуру и свойства наклепанного металла. Диаграмма рекристаллизации 1 рода. Горячая деформация поликристаллов. Особенности и механизмы. Механизмы термической пластичности. Влияние горячей деформации на структуру и свойства. Диаграмма рекристаллизации 2 рода. Классификация процессов ОМД по температурным условиям.

Теория подобия в процессах обработки металлов давлением. Тензометрирование и его использование для исследований напряжений, усилий деформирования, перемещений, скоростей и др. Методы исследований деформаций: координатные сетки, линии тока, муаровые полосы. Оптические методы исследований деформаций и напряжений. Исследования деформированного состояния методом твердости, рекристаллизованного зерна и рентгенографическими методами. Границы применимости экспериментальных методов, их точность и чувствительность. Методы планирования экспериментов и обработка экспериментальных данных.

Внешнее трение в процессах ОМД. Физическая природа трения. Виды и законы трения. Зависимость сил трения от температуры, степени и скорости деформирования, давления, физико-химических свойств контактируемых поверхностей и др. факторов. Анизотропия трения. Методы экспериментального исследования трения. Смазки, их свойства, назначение и основные требования к ним.

Сопротивление металлов пластическому деформированию. Сопротивление деформации: определение, влияние степени и скорости деформации, температуры, истории деформирования, внешней среды. Экспериментальные методы определения сопротивления деформации. Аналитические методы определения сил деформации. Метод совместного решения дифференциального уравнения равновесия и уравнения пластичности, методы линий скольжения и характеристик, метод работ, вариационные методы. Сопоставление различных методов расчета сил деформации. Работа и мощность деформации. Тепловыделение в процессе деформации.

Пластичность и разрушение. Пластичность и деформируемость металлов и методы определения. Основные факторы, влияющие на пластичность, схема напряжен-

федеральное государственное бюджетное образовательное учреждение высшего образования

«Нижегородский государственный технический университет им.Р.Е.Алексеева»

Программа кандидатского экзамена

Факультет подготовки специалистов высшей квалификации

ного состояния, внешняя среда и др. Виды разрушения при пластической деформации. Феноменологические теории разрушения. Трещины. Теория Гриффитса. Накопление повреждений. Диаграммы пластичности. Деформация металлических материалов в состоянии сверхпластичности.

2.2 Основы теории процессов обработки металлов давлением

Теория продольной прокатки на гладкой бочке. Очаг деформации, совокупность параметров, описывающих его геометрию. Условия захвата полосы валками. Трение при захвате и установившемся процессе прокатки. Влияние технологических и конструктивных параметров на условия захвата полосы валками. Анализ скоростей пластического течения в очаге деформации. Опережение, отставание, расчетные формулы для их определения. Нейтральный угол. Связь между характеристическими углами. Влияние технологических параметров на величину опережения. Неравномерность уширения в очаге деформации. Влияние формы (геометрии) очага деформации, внешних зон, температуры, условий трения и структурного состояния на величину уширения.

Контактные напряжения при прокатке (плоская задача). Дифференциальное уравнение контактных напряжений. Контактное напряжение в очаге деформации при постоянном значении коэффициента трения. Экспериментальные исследования распределения контактных напряжений и их зависимость от параметров процесса. Распределение деформаций и напряжений в объеме очага деформации в зависимости от фактора формы очага деформации. Силы прокатки и факторы, определяющие его величину. Влияние условий трения, натяжения, ширины полосы и внешних зон на контактное давление. Особенности расчета усилий в зависимости от фактора формы очага деформации. Энергия, затрачиваемая на прокатку, методы определения работы и мощности прокатки. Момент прокатки. Коэффициент плеча равнодействующей и методы его определения. Факторы, влияющие на положение равнодействующей. Температурные условия в очаге деформации. Расчет температуры металла при прокатке.

Теория прокатки в калибрах. Особенности процесса прокатки в калибрах. Аналитическое описание формы калибров, показатель и коэффициент формы. Уравнение постоянства объемов при прокатке в калибрах. Критерий неравномерности распределения обжатий по ширине калибра. Внеконтактная деформация и понятие средней вытяжки в калибрах. Неравномерность деформации при прокатке в калибрах. Зоны затрудненной деформации. Влияние формы калибра и раската на формоизменение и напряженное состояние металла. Расчет уширения в калибрах. Распределение контактных напряжений в очаге деформации. Расчет среднего давления и сил прокатки в калибрах.

Версия:	1.0	Без подписи документ действителен 3 суток после распечатки. Дата и время распечатки:	КЭ:	УЭ №	Стр. 6 из 16

федеральное государственное бюджетное образовательное учреждение высшего образования

«Нижегородский государственный технический университет им.Р.Е.Алексеева»

Программа кандидатского экзамена

СК-РП-15.1-04-22

Факультет подготовки специалистов высшей квалификации

Радиально-сдвиговая и поперечная прокатка. Кинематические и энергосиловые параметры процесса радиально-сдвиговой прокатки. Принципы построения очага деформации, расчет калибровки валков при больших углах подачи. Поперечная прокатка. Скоростные условия. Угол нейтрального сечения и условия вращения заготовки. Деформационные параметры. Силовые условия. Напряженное состояние металла.

Теория процессов прокатки бесшовных труб. Винтовая прокатка. Особенности процесса, очаг деформации и его параметры. Скоростные условия. Распределение контактных напряжений в очаге деформации. Условия захвата заготовки валками и стабильность процесса. Напряженно-деформированное состояние металла при винтовой прокатке. Энергосиловые параметры процесса.

Теоретические основы процесса редуцирования. Пилигримовая прокатка. Особенности деформации металла. Скоростные условия. Зоны опережения и отставания. Направление сил трения в очаге деформации. Условия захвата металла валками. Энергосиловые параметры процесса.

Холодная периодическая прокатка труб. Схема процесса прокатки на станах ХПТ, ХПТС, ХПТР и особенности пластического формоизменения металла. Напряженно-деформированное состояние металла. Условия захвата металла валками. Скоростные условия. Энергосиловые параметры процесса.

Теория процессов производства сварных труб. Способы формовки трубной заготовки в холодном и горячем состоянии. Напряженно-деформированное состояние металла в процессах непрерывной формовки заготовки в холодном и горячем состоянии. Кинематические условия и энергосиловые параметры при прямошовной формовке. Методы их расчета. Особенности деформации металла в процессах формовки листов на прессах. Распределение напряжений и деформаций по ширине и высоте листов. Определение потребного усилия прессового оборудования. Особенности деформации металла при экспандировании. Определение оптимальной величины экспандирования и потребной мощности.

Теория волочения. Разновидности процесса волочения, деформационные показатели. Напряженно-деформированное состояние металла. Особенности контактного трения при волочении. Расчетные методы определения напряжений и усилия волочения. Предельное и оптимальное значение коэффициента вытяжки при волочении.

Теория прессования. Сущность и разновидности процессов прессования. Закономерности течения металла при прессовании прутков, профилей труб и напряженно-деформированное состояние металла. Температурные условия процессов прессования. Особенности трения при прессовании. Силовые условия процессов прессования.

Теория ковки. Геометрические параметры очага деформации для различных процессов ковки, их влияние на распределение напряжений и деформаций при про-

федеральное государственное бюджетное образовательное учреждение высшего образования

«Нижегородский государственный технический университет им.Р.Е.Алексеева»

Программа кандидатского экзамена

СК-РП-15.1-04-22

Факультет подготовки специалистов высшей квалификации

тяжке, осадке, прошивке, разгонке и др. Напряжения и деформации при ковке плоскими, комбинированными и вырезными бойками. Особенности трения на поверхности контакта инструмента с металлом. Скольжение, торможение и застой на поверхности контакта. Зоны деформации при осадке цилиндрических заготовок плоскими бойками. Неравномерность деформации при осадке. Напряженное состояние металла при осадке. Расчет контактных напряжений и усилий при осадке и вытяжке.

Теория штамповки. Объемная штамповка. Характеристика разновидностей объемной штамповки. Напряженно-деформированное состояние в процессах объемной штамповки. Стадии объемной штамповки. Анализ течения металла в штампе. Термомеханические режимы штамповки. Изотермическая штамповка и штамповка в режиме сверхпластичности. Методы расчета деформирующих усилий при объемной штамповке. Листовая штамповка и формовка. Особенности деформирования металла при операциях листовой штамповки (разделительных и формообразующих). Анализ напряженно-деформированного состояния металла в различных процессах листовой штамповки. Методы расчета сил, напряжений и деформаций.

Особенности построения математических моделей процессов ОМД. Моделирование процессов: продольная прокатка на гладкой бочке; прокатка в калибрах; радиально-сдвиговая и поперечная прокатка; винтовая прокатка; пилигримовая прокатка; прокатка сварных труб; холодная прокатка труб; волочение; прессование; ковка; объемная и листовая штамповка.

2.3 Технологии производства продукции методами обработки металлов давлением

Технология прокатного производства. Профильный и марочный сортамент прокатного производства черных и цветных металлов. Способы производства слитков и заготовок. Технология нагрева исходных материалов перед прокаткой и охлаждения после прокатки. Системы вытяжных калибров, их характеристика и методики расчета. Калибровка валков для прокатки блюмов и заготовок простых и фасонных сортовых профилей. Методики расчета калибровки валков прокатного стана, маршрутная схема прокатки. Управление профилем и формой полос. Основные технологические схемы и оборудование для производства полупродукта, крупносортовой, среднесортовой, мелкосортовой стали и катанки, горячекатаного и холоднокатаного листа, гнутых и фасонных холоднокатаных профилей. Особенности производства специальных профилей проката (периодические профили, колеса, бандажи, кольца, шары и т.д.). Совмещенные технологические процессы в производстве листовой и сортовой продукции. Технологические особенности прокатки непрерывнолитого металла. Характеристика качества продукции прокатного производства, схемы технологических процессов отделки исходных материалов и готовой продукции. Контроль

федеральное государственное бюджетное образовательное учреждение высшего образования

«Нижегородский государственный технический университет им.Р.Е.Алексеева»

Программа кандидатского экзамена

СК-РП-15.1-04-22

Факультет подготовки специалистов высшей квалификации

качества, способы удаления дефектов. Технологические операции придания дополнительных служебных свойств прокату (термообработка, нанесение покрытий и т.д.). Основы автоматизации технологических процессов. Технико-экономические показатели производства листовой и сортовой продукции.

Технология производства бесшовных труб. Сортамент и методы испытаний стальных труб. Характеристика основного оборудования и технологий производства трубных заготовок. Режимы нагрева. Виды брака при нагреве, способы его предотвращения и устранения. Характеристика и классификация технологических процессов производства горячедеформированных бесшовных труб. Прошивка заготовок. Раскатка гильз в черновые (передельные) трубы. Калибрование и редуцирование труб. Производство труб на различных трубопрокатных агрегатах. Режимы деформации труб и расчет таблиц прокатки. Расчет калибровки технологического инструмента. Производство труб прессованием. Технология непрерывной безоправочной прокатки труб. Качество бесшовных труб. Технико-экономические показатели производства бесшовных труб. Технологические схемы и оборудование для производства холоднодеформированных труб. Расчет режимов и маршрутов прокатки труб на станах ХПТ, ХПТС, ХПТР. Методы расчета калибровки инструмента станов холодной прокатки труб. Технология и принципы расчета маршрутов волочения труб. Отделочные операции при холодной прокатке и волочения труб. Качество холоднодеформированных труб.

Технология производства сварных труб. Общая характеристика технологического процесса, основные операции процесса. Подготовка листового металла в сварке. Технология производства труб непрерывной печной сваркой, электросваркой на непрерывных трубоэлектросварочных агрегатах, дуговой сваркой под слоем флюса прямошовных, спиральношовных и многошовных труб. Принципы расчета таблиц прокатки. Основные методы расчета калибровки технологического инструмента трубоформовочного и трубосварочного оборудования. Новые процессы производства сварных труб: электронно-лучевая сварка труб, сварка труб плазменной дугой и др. Качество сварных труб. Технико-экономические показатели производства сварных труб. Тенденции развития производства бесшовных и сварных труб.

Технология волочильного производства. Сортамент и основные требования, предъявляемые к качеству изделий, получаемых волочением. Технологический процесс и основное оборудование ля производства прутков, труб, проволоки, калиброванного металла и фасонных профилей волочением. Основные операции подготовки поверхности заготовки. Влияние параметров технологического процесса производства на формирование показателей качества готовых изделий, методы оценки качества и основные отделочные операции. Современные непрерывные линии подготов-

федеральное государственное бюджетное образовательное учреждение высшего образования

«Нижегородский государственный технический университет им.Р.Е.Алексеева»

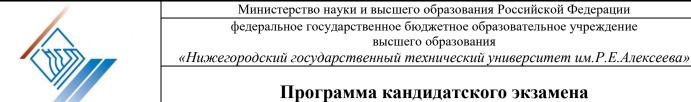
Программа кандидатского экзамена

СК-РП-15.1-04-22

Факультет подготовки специалистов высшей квалификации

ки заготовки и отделки готовой продукции. Тенденции развития технологии и оборудования волочильного производства.

Технология прессования. Типовые технологические схемы производства прессованных полуфабрикатов и изделий. Разновидности процесса прессования по условиям контактного взаимодействия заготовки с инструментом, температурным условиям и типу инструмента и инструментальных комплектов. Способы получения прессизделий различных типов. Особенности прессования различных металлов и сплавов. Управление течением металла и свойствами прессизделий. Прессовое оборудование, проектирование технологического инструмента.


Технология ковки. Заготовки для поковки: слитки, непрерывно-литые и прокатанные заготовки, их макростроение (геометрические модели). Нагрев металла перед ковкой; математические модели теплового состояния слитков и заготовок, типы тепловых полей. Основные типы агрегатов для ковки – интегрированные и автоматизированные комплексы, радиально-обжимные машины. Потоки и схемы пластического течения металла при ковке, способы их регулирования. Деформационные возможности металла при ковке, способы их регулирования. Деформационные возможности кузнечного инструмента в создании и преобразовании полей напряжений и деформаций металла и формирования физико-механический свойств металла поковки. Разновидности операций ковки, оборудования и режимы отделки, методы управления и контроля качеством продукции ковочного производства.

Технология объемной штамповки. Сортамент продукции и характеристика исходных заготовок. Технологические процессы объемной штамповки. Расчет технологических параметров. Разработка стадий технологического процесса объемной штамповки. Выбор технологического оборудования. Особенности автоматизации процессов. Отделочные операции и пути повышения качества штампованных поковок. Особенности эксплуатации штампов, стойкость и применение смазочноохлаждающих жидкостей. Перспективы развития технологии и оборудования объемной штамповки.

Технология листовой штамповки и формовки. Технологические процессы листовой штамповки и формовки, области применения и классификация изделий. Особенности механизации и автоматизации технологических процессов. Технологическая оснастка: эксплуатация и применение смазочно-охлаждающей жидкостей. Перспективы разработки новых процессов и оборудования.

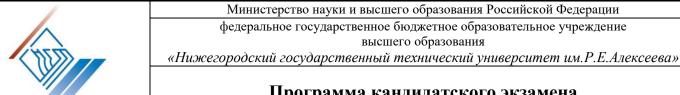
Специальные технологии производства продукции. Импульсное (высокоскоростное) нагружение в процессах деформирования металлов. Механизмы пластической деформации, температурно-скоростные условия деформации, неравномерность течения металла под действием импульсных нагрузок. Сортамент продукции. Основные технологические операции и оборудование. Производство полуфабрикатов и из-

Версия: 1.0	Без подписи документ действителен 3 суток после распечатки. Дата и время распечатки:	КЭ:	УЭ №	Стр. 10 из 16

Программа кандидатского экзамена

Факультет подготовки специалистов высшей квалификации

делий из порошковых материалов методами прокатки, прессования (экструзии), обработки взрывом, аэро- и газостатического прессования. Особенности воздействия давлением на обрабатываемый материал. Температурно-скоростные условия деформации, неравномерность деформаций влияния среды обработки на свойства материала. Производство композиционных материалов (слоистых, волокнистых, дисперсноупрочненных) с использованием процессов прокатки и прессования. Схемы технологических процессов, анализ напряженно-деформированного состояния материала, силовые параметры процессов. Качество продукции. Материалы, получаемые СВС (самораспространяющийся высокотемпературный синтез) процессом. Основы теории и технологии процесса СВС. Процессы, основанные на совмещении СВС и ОМД: СВС – компактирование, СВС – экструзия, СВС – прокатка, в том числе в вакууме. Основные технологические операции и оборудование.


Основы ресурсо- и энергосбережения в технологических процессах ОМД. Виды производств: листопрокатное, сортопрокатное, трубопрокатное, волочильное, прессовое, кузнечно-штамповочное, специальные. Экологические аспекты в технологических процессах ОМД.

2.4 Список литературы

СК-РП-15.1-04-22

- 1. Колмогоров В.Л. Механика обработки металлов давлением. Учебник для вузов. М.: Металлургия, 1986. 688 с. (1-е изд.); Екатеринбург: УГТУ – УПИ. 2001. – 836 с. (2-е изд.).
- 2. Гун Г.Я. Теоретические основы обработки металлов давлением (теория пластичности). Учебник для вузов. М.: Металлургия, 1980. – 456 с.
- 3. Тюрин В.А., Мохов А.И. Теория обработки металлов давлением. Под ред. проф. В.А. Тюрина. Учебник для вузов. – Волгоград: РПК «Политехник», 2000. – 416 c.
- 4. Гун Г.Я. Математическое моделирование процессов обработки металлов давлением. Учебное пособие для вузов. М.: Металлургия, 1983. – 352 с.
- 5. Полухин П.И., Горелик С.С., Воронцов В.К. Физические основы пластической деформации. Учебное пособие для вузов. М.: Металлургия, 1982. – 584 с.
- 6. Физическое металловедение. Учебник для вузов. С.В. Грачев, В.Р. Бараз, А.А. Богатов, В.П. Швейкин – Екатеринбург: УГТУ – УПИ, 2000. – 534 с.
- 7. Целиков А.И., Никитин Г.С., Рокотян С.Е. Теория продольной прокатки. Учебник для вузов. М.: Металлургия, 1980. – 360 с.
- 8. Потапов И.Н., Коликов А.П., Друян В.И. Теория трубного производства. Учебник для вузов. М.: Металлургия, 1991. – 424 с.
- 9. Охрименко Я.М., Тюрин В.А. Теория процессов ковки. Учебное пособие для вузов. М.: Высшая школа. 1977. – 295с.

ļ	Версия: 1.0	Без подписи документ действителен 3 суток после распечатки. Дата и время распечатки:	КЭ:	УЭ №	Стр. 11 из 16

СК-РП-15.1-04-22

Программа кандидатского экзамена

Факультет подготовки специалистов высшей квалификации

10. Перлин И.Л., Райтбарт Л.Х. Теория прессования металлов. Учебник для ву-

- зов. M.: Металлургия, 1975. 448 c. 11. Перлин И.Л., Ерманок М.З. Теория волочения. Учебник для вузов. М.: Металлургия, 1971. – 447 с.
- 12. Прокатное производство / П.И. Полухин, Н.М. Федосов, А.А. Королев, Ю.М. Матвеев. Учебник для вузов. М.: Металлургия, 1960. – 966 с. (1-е изд.); 1968 – 676 с. (2-е изд.).
- 13. Смирнов В.К., Шилов В.А., Инатович Ю.В. Калибровка прокатных валков. М.: Металлургия. 1987. – 367 с.
- 14. Технология обработки давлением цветных металлов и сплавов. Учебник для вузов / А.В. Зиновьев, А.И. Колпашников, П.И. Полухин и др. – М.: Металлургия, 1992. – 512 с.
- 15. Технология производства труб. Учебник для вузов / И.Н. Потапов, А.П. Коликов, В.Н. Данченко и др. – М.: Металлургия, 1994. – 528 с.
- Ковка и штамповка: Справочник. Т.1. Материалы и нагрев. Оборудование. Ковка / Е.И, Семенов (пред.) и др. - Под ред. Е.И. Семенова. М. Машиностроение. 2010. 568 с.
- Ковка и штамповка: Справочник. Т.2. Горячая объемная штамповка / Е.И., Семенов (пред.) и др. - Под ред. Е.И. Семенова. М. Машиностроение. 2012. 434 с.
- Ковка и штамповка: Справочник. Т.3. Холодная объемная штамповка / Е.И, Семенов (пред.) и др. - Под ред. Г.А. Навроцкого. М. Машиностроение. 2014. 384 c.
- Ковка и штамповка: Справочник. Т.4. Листовая штамповка / Е.И, Семенов (пред.) и др. - Под ред. А.Д. Матвеева. М. Машиностроение. 2016. 544 с.

3 Дополнительная программа

Дополнительная программа, самостоятельно составляемая аспирантом (соискателем), включает в себя титульный лист, не менее 15 вопросов по теме диссертации и не менее 15 источников литературы. Дополнительная программа должна быть подписана научным руководителем и согласована с деканом факультета подготовки специалистов высшей квалификации. Пример оформления дополнительной программы приведен в Приложении.

Версия: 1.0	Без подписи документ действителен 3 суток после распечатки. Дата и время распечатки:	КЭ:	УЭ №	Стр. 12 из 16

федеральное государственное бюджетное образовательное учреждение высшего образования

«Нижегородский государственный технический университет им.Р.Е.Алексеева»

Программа кандидатского экзамена

Факультет подготовки специалистов высшей квалификации

ПРИЛОЖЕНИЕ

Пример оформления дополнительной программы

Минобрнауки России

федеральное государственное бюджетное образовательное учреждение высшего образования

НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМ. Р.Е. АЛЕКСЕЕВА

	УТВЕРЖДАЮ
	Декан ФСВК
	 Р.Ш. Бедретдинов
«	

Дополнительная программа

к кандидатскому экзамену

по специальности 2.6.4 – Обработка металлов давлением

Нижний Новгород 2022

Версия: 1.0	Без подписи документ действителен 3 суток после распечатки. Дата и время распечатки:	КЭ:	УЭ №	Стр. 13 из 16

Министерство науки и высшего образования Российской Федерации федеральное государственное бюджетное образовательное учреждение высшего образования «Нижегородский государственный технический университет им.Р.Е.Алексеева»

Программа кандидатского экзамена

СК-РП-15.1-04-22 Факультет подготовки специалистов высшей квалификации

Дополнительная программа экзамена по специальности

- 1. Дефекты металлического материала и зависимость их накопления от условий пластического деформирования..
- 2. Механизмы деформации в условиях больших пластических деформаций.
- 3. Определение степени деформации в условиях сложного (немонотонного) нагружения.
- 4. Методики оценки изменения дефектности в услових сожного нагружения.
- 5. Обобщенные кривые упрочнения и методики их построения.
- 6. Программное обеспечение оценки изменения структурных параметров в условиях пластического деформирования.
- 7. Диаграммы рекристаллизации 2-го и 3-го рода, способы их построения.
- 8. Процесс динамической рекристализации и ее стадии.
- 9. Способ оценки стадий динамической рекристаллизации в условиях горячей дробной деформации.
- 10. Диаграммы предельной деформации и их зависимость от «жесткости» напряженного состояния.
- 11. Структурно-кинетическая концепция прочности В.В. Рыбина.
- 12. Сопротивление усталости и ее зависимость от структурных показателей.
- 13. Основные структурно-механические показатели деформированного материала, определяющие сопротивление усталости в зависимости от температурных условияй деформации.
- 14. Пластическое деформирование объемного тела и программные продукты, определяющие напряженно-деформированное состояние го материала.
- 15. Механические схемы деформации, действительгый очаг деформации в условиях пластического деформирования в открытых штампах.

Версия: 1.0	Без подписи документ действителен 3 суток после распечатки. Дата и время распечатки:	КЭ:	УЭ №	Стр. 14 из 16

Министерство науки и высшего образования Российской Федерации федеральное государственное бюджетное образовательное учреждение высшего образования «Нижегородский государственный технический университет им.Р.Е.Алексеева»

СК-РП-15.1-04-22

Программа кандидатского экзамена

Факультет подготовки специалистов высшей квалификации

Список литературы

- 1. Новиков, И..И. Кристаллография и дефекты кристаллической решетки: учебник для вузов. / И.И. Новиков, К.М. Разин. – М.: Металлургия, 1990. – 336 с.
- 2. Шмитт-Томас, К.Г. Металловедение для машиностроения: Справочник / К.Г. Шмитт-Томаснтьев. – М.: Металлургия, 1995. – 512 с..
- 3. Смирнов-Аляев, Г.А. Сопротивление металлов пластическому деформированию / Г.А. Смирнов-Аляев. - Л.: Машиностроение, 1978. – 386 с.
- 4. Макушок, Е.М. Инженерная теория пластичности / Е.М. Макушок и др. -Минск., Hayкa и техника, 1985, – 288 с.
- 5. Галкин В.В., Гаврилов Г.Н., Дербенев А.А., Братухин А.В. Инженерные решения оценки механических свойств холоднодеформированных металлических материалов в условиях многоэтапной обработки: монография / В.В. Галкин [и др.]; НГТУ. – Н. Новгород, 2019. –100 с.
- 6. Галкин, В.В. Применение программного обеспечения для определения механических свойств металлических материалов в условиях многопереходного деформирования / В.В. Галкин, С.А. Манцеров, Л.О. Дудников, Н.А. Огурцов // Заготовительные производства в машиностроении. 2021. Т.19, № 11. – С. 400-407.
- 7. Ковка и штамповка: Справочник. Т.1. Материалы и нагрев. Оборудование. Ковка / Е.И, Семенов (пред.) и др. - Под ред. Е.И. Семенова. М. Машиностроение. 2010. 568 с.
- 8. Горелик, С.С. Рекристаллизация металлов и сплавов / С.С. Горелик, С.В. Добаткин, Л.М. Капуткина – М.: МИСИС, 2005. – 432 с.

федеральное государственное бюджетное образовательное учреждение высшего образования

«Нижегородский государственный технический университет им.Р.Е.Алексеева»

Программа кандидатского экзамена

СК-РП-15.1-04-22

Факультет подготовки специалистов высшей квалификации

- Галкин, В.В. Рекристаллизация аустенитной стали X18Н10Т при дробной горячей деформации / В.В. Галкин, А.Д. Рябцев, Г.Н. Гаврилов, Е.Г. Терещенко, А.В. Вашурин // Вестник машиностроения. 2021. №11. С.32-38
- 10. Скуднов, В.А. Предельные пластические деформации металлов / В.А. Скуднов. М.: Металлургия, 1989. 176 с.
- 11. Рыбин, В.В. Большие пластические деформации и разрушение металлов / В.В. Рыбин. М.: Металлургия, 1986. 224 с.
- 12. Терентьев, В.Ф. Усталостная прочность металлов и сплавов / В.Ф. Терентьев. М.: Интермет Инжиниринг, 2002. 288 с.
- 13. Пачурин Г.В., Галкин В.В., Власов В.А., Меженин Н.А. Усталостное разрушение при разных температурах и долговечность штампованных металлоизделий: монография / Г.В. Пачурин [и др.]; под общей ред. Г.В. Пачурина; НГТУ. Н. Новгород, 2010. 169 с.
- 14. Галкин, В.В. Вопросы оценки деформации металла методами математического моделирования и экспериментальных исследований / В.В. Галкин, А.А. Дербенев, Е.Г. Терещенко // Заводская лаборатория. 2014. №6 (том 80). С. 62-65.
- 15. Галкин, В.В Изготовление чугунных поковок круглой формы методом горячей объемной штамповки в открытом штампе на кривошипном горячештамповочном прессе / В.В. Галкин, В.Н. Дубинский, В.А. Коровин // Заготовительные производства в машиностроении. № 2. 2007. С. 31-33

Научный руководитель

к.т.н., доцент

В.В. Галкин