МИНОБРНАУКИ РОССИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМ. Р.Е. АЛЕКСЕЕВА» (НГТУ)

УТВЕРЖДАЮ

Проректор по научной работе

А.А. Куркин

"30" was

20 22 г.

ПРОГРАММА

вступительных испытаний по специальной дисциплине для поступающих в аспирантуру

Научная специальность: 2.4.2 Электротехнические комплексы и системы

Программа вступительного испытания по специальной дисциплине разработана в соответствии с паспортом научной специальности 2.4.2.

Вопросы к вступительному испытанию в аспирантуру по научной специальности 2.4.2

Специальные главы теории управления

- 1. Предметные области, в которых используется управление. Привести примеры типов управления: автоматического, автоматизированного и организационного
- 2. Задачи оптимизации: назначение, понятия критерия оптимизации (целевой функции), ограничений, множества переменных, на котором производится поиск оптимального решения
- 3. Задача системного баланса: назначение, понятия векторов потребления, валовых выпусков, межотраслевых (межкомпонентных внутрисистемных) связей
 - 4. Задача системного баланса: постановка и решение задачи системного баланса
 - 5. Роль дифференциальных уравнений в теории управления
 - 6. Динамическая модель решения нелинейного уравнения
 - 7. Математическое описание динамических объектов в пространстве состояний
 - 8. Передаточная функция четырёхполюсника
- 9. Определение статистической ошибки системы регулирования от задающего и возмущающих воздействий
- 10. Применение имитационного моделирования при проектировании на примере оценки относительной величины пускового тока двигателя постоянного тока от соотношения его параметров.
- 11. Связь требований к САУ с формой её ЛАЧХ. Синтез систем управления посредством введения в систему корректирующих устройств
 - 12. Сущность модального управления и его возможности
- 13. Метод стандартных коэффициентов, основные стандартные формы и соответствующие расположения полюсов систем
- 14. Понятия управляемости и наблюдаемости систем как необходимые условия реализации требований к САУ
- 15. Назначение наблюдающего устройства (НУ). Структурная схема модального регулятора с НУ
- 16. Сравнить динамические характеристики наблюдающих устройств и модальных регуляторов. Их отличия и обеспечение соответствующих требований
 - 17. Математическое описание наблюдателя Люенбергераи его структурная схема

- 18. Коэффициенты внутренних обратных связей в наблюдающем устройстве и порядок их нахожления
- 19. Случайные величины и события, средние значения, плотность распределения вероятностей, виды распределений
 - 20. Определение значимых факторов. Дисперсионный анализ
- 21. Использование регрессионного анализа для идентификации вида и тесноты связи внешних воздействий с выходной переменной
 - 22. Случайные процессы, стационарные и нестационарные, эргодичность
 - 23. Корреляционный анализ при обработке сигналов, примеры применения
- 24. Автокорреляционные функции сигнала с конечной энергией и сигнала периодического, белого шума
- 25. Свойства автокорреляционной функции. Спектральная плотность мощности и автокорреляция
- 26. Связь между корреляционными функциями и спектрами сигналов (амплитудным и фазовым). Использование для коррекции канала связи источника и приёмника сигналов
 - 27. Задачи синтеза линейных систем, работающих в условиях случайных воздействий
 - 28. Основные характеристики случайных сигналов
 - 29. Методы идентификации объектов управления. Сущность частотного метода
- 30. Методы идентификации объектов управления. Идентификация по переходной характеристике
- 31. Прямое и обратное преобразования Фурье. Примеры использования в системах управления электротехническими комплексами
- 32. Связь спектральных (частотных передаточных) функций и свёртки функций времени
 - 33. Ряды Фурье. Применение спектральных методов для анализа электрических цепей
 - 34. Аналоговые и дискретные сигналы, решетчатая функция и теорема Котельникова
- 35. Прямое и обратное дискретное преобразование Фурье. Примеры использования в электротехнике
- 36. Z-преобразование, дискретные передаточные функции, их использование при синтезе регуляторов в дискретной области
- 37. Способы преобразования математического описания аналогового регулятора в дискретную область
 - 38. Структурные схемы дискретных регуляторов, особенности цифровых регуляторов
- 39. Структуры цифровых систем управления электротермическим объектом и электроприводом, различия требований к их характеристикам

- 40. Нерекурсивные цифровые фильтры (с КИХ), их описание, структурная схема и особенности
- 41. Рекурсивные цифровые фильтры (с БИХ), их описание, структурная схема и особенности
- 42. Цифровые регуляторы как устройства, изменяющие частотный спектр сигналов ошибки и возмущения
- 43. Синтез цифровых регуляторов на основе дискретизации аналоговых корректирующих устройств. Условия применения данного метода
 - 44. Понятие об экспертных системах, их применение в АСУ
 - 45. Роль имитационных моделей в киберфизических системах
- 46. Нечёткая математика в имитационном моделировании и управлении. Основные понятия и алгоритм использования
- 47. Нейронные сети как универсальный инструмент аппроксимации. Их применение в системах управления электротехническими комплексами
- 48. Понятие комбинационных схем, назначение логических элементов, шифраторов/дешифраторов, мультиплексоров
 - 49. Понятие конечных автоматов, назначение триггеров, регистров и счётчиков
- 50. Автоматы Мили и Мура, различие в связях комбинационных и регистровых компонент
 - 51. Комбинационные схемы и конечные автоматы как основа ПЛИС
 - 52. Основные элементы и структурные схемы микропроцессорных систем управления

Системы управления электроприводов

- 1. Автоматизированный электропривод (АЭП) с частотно параметрическим регулированием скорости.
 - 2. АЭП с частотно-токовым (скалярным) регулированием скорости.
- 3. АЭП с частотно-токовым (скалярным) регулированием скорости с замкнутым контуром скорости.
- 4. Понятие обобщенной электрической машины (ОЭМ), допущения, уравнения электрического равновесия для статора и ротора.
 - 5. Электромагнитный момент обобщенной электрической машины.
 - 6. Уравнения динамической механической характеристики двигателя.
- 7. Линейные преобразования уравнений механической характеристики обобщенной машины, критерий правильности преобразований.
 - 8. Линейные преобразования для статорной и роторной цепи.

- 9. Формулы обратного преобразования.
- 10. Уравнения электрического равновесия во вращающейся системе координат.
- 11. Проверка выполнения требований инвариантности мощности при координатном (линейном) преобразовании.
 - 12. Комплексные преобразования для обобщенной электрической машины.
 - 13. Схемы замещения ОЭМ в неподвижных и вращающихся осях.
- 14. Уравнения электрического равновесия при разных скоростях вращения координатных осей.
- 15. Фазные преобразования переменных. Формулы прямого и обратного преобразования.
 - 16. Обобщенный вектор, его свойства.
- 17. Уравнения динамической механической характеристики асинхронного короткозамкнутого двигателя.
- 18. Принцип ориентирования по полю асинхронного двигателя при частотном управлении (уравнения динамической механической характеристики АД с КЗР).
- 19. Структурная схема системы АЭП «TRANSVECTOR» (назначение блоков и узлов).
 - 20. Блоки фазных и координатных преобразований.
 - 21. Блок развязки (назначение, структурная схема).
 - 22. Частотно-токовые АЭП переменного тока.
 - 23. Векторное регулирование момента в ЭМ переменного тока (2 правила).
 - 24. Способы реализации моментного треугольника (3 способа).
 - 25. Варианты построения синхронного АЭП с частотно-токовым управлением.
 - 26. Функциональная схема синхронного АЭП с частотно-токовым управлением.
 - 27. Работа АЭП в установившимся режиме.
 - 28. Статические характеристики частотно-токового синхронного АЭП.
 - 29. Синхронный АЭП с регулированием продольной и поперечной составляющих.
 - 30. Функциональная схема, назначение блоков и узлов.
- 31. Частотно-токовый асинхронный АЭП (два варианта формирования моментного треугольника).
 - 32. Функциональная схема, назначение блоков и узлов, работа схемы.
 - 33. Статические характеристики частотно-токового асинхронного АЭП.
 - 34. Датчиковый тиристорный частотно-токовый асинхронный АЭП.
 - функциональная схема
 - назначение блоков и узлов

- особенности построения и работа контуров тока статора.
- особенности построения и работа адаптивного контура скорости.
- 35. Бездатчиковый тиристорный частотно-токовый асинхронный АЭП.
- функциональная схема
- назначение блоков и узлов
- 36. Бездатчиковый транзисторный частотно-токовый асинхронный АЭП.
- особенности функциональной схемы.
- назначение блоков и узлов.
- 37. Векторная ШИМ модуляция. Принцип, базовые вектора, варианты реализации при двухпроходном и однопроходном алгоритмах управления.

Системы программного управления техническими объектами

- 1. Требования к многооперационным станкам с ЧПУ, виды накопителей инструмента.
- 2. Особенности работы электропривода (ЭП) главного движения и ЭП подачи кинематика ЭП подачи
- 3. Классификация систем ЧПУ по способу задания программы, системы с аналоговым заданием.
 - 4. Цикловые системы программного управления, пример построения.
- 5. Классификация систем ЧПУ по способу реализации алгоритма, по количеству потоков информации, виду движения рабочего органа.
 - 6. Структура систем ЧПУ, назначение основных блоков
- 7. Кодирование информации управляющей технологической программы в систему ЧПУ.
- 8. Интерполяторы систем ЧПУ, алгоритм линейной интерполяции по методу оценочной функции.
- 9. Дискретный ЭП подачи. Конструкция, принцип действия индукторно-реактивного ШД
- 10. Статическая и динамическая характеристики шагового двигателя (ШД), шаговый и полушаговый режимы ШД при m=3; 4; 6
 - 11. Система управления ШД, построение коммутатора фаз.
 - 12. Усилители мощности для питания униполярного ШД
 - 13. Схема управления 4-фазным ШД.
 - 14. Управление биполярным ШД.
- 15. Виды следящего ЭП подачи, виды измерительных преобразователей и способы их уста-новки

- 16. Функциональная схема импульсно следящей системы ЧПУ.
- 17. Устройство и принцип работы электрического фото-импульсного преобразователя пе-ремещений.
 - 18. Обработка сигналов энкодера, формирование импульсов направления.
 - 19. Структурная схема контура положения следящего ЭП подачи
 - 20. Расчёт динамической ошибки, определение разрядности счётчика и ЦАП
 - 21. Конструкция и режимы работы резольвера
 - 22. Восьми канальный 14-ти разрядный ЦАП, работающий в режиме мультиплексирования (поочерёдного обслуживания каналов).
- 23. Построение канала обратной связи с использованием импульсного датчика перемещений.
 - 24. Построение канала обратной связи с датчиком трансформаторного типа.
 - 25. Определения дробной части поворота фазы резольвера.
 - 26. Узел определения числа полных оборотов фазы резольвера.
 - 27. Работа МП СЧПУ в режиме реального времени.
 - 28. Алгоритм кодовой интерполяция.
 - 29. Классификация промышленных коммуникационных сетей.
- 30. Архитектура построения промышленных коммуникационных сетей. Модели организации доступа к сети.
 - 31. Интерфейс RS232.
 - 32. Интерфейс RS485.
 - 33. Интерфейс USB.
 - 34. Промышленная сеть Modbus.
 - 35. Промышленная сеть Can.
 - 36. Промышленная сеть Profibus.
 - 37. Промышленная сеть AS-interface.
 - 38. Промышленная сеть Ethernet.
 - 30. Виды человеко-машинного интерфейса.
 - 31. Классификация SCADA-систем.
 - 32. Структура SCADA-систем.

Преобразовательная техника

- 1. Потери в диодах и тиристорах от протекания прямого тока
- 2. Динамические потери в диодах и тиристорах
- 3. Потери в транзисторах от протекания прямого тока

- 4. Процессы переключения в MOSFET и IGBT
- 5. Динамические потери в транзисторах и шунтирующих диодах
- 6. Снижение коммутационных потерь в силовых транзисторах
- 7. Тепловые расчеты транзисторов и охладителей в установившемся тепловом режиме
- 8. Особенности расчетов переходных тепловых режимов
- 9. Конденсаторы устройств силовой электроники. Плёночные конденсаторы. Выбор пленочных конденсаторов
- 10. Особенности выбора конденсаторов при несинусоидальном напряжении
- 11. Электролитические конденсаторы. Выбор электролитических конденсаторов
- 12. Основные типы магнитных материалов элементов преобразовательных устройств, характерные области применения
- 13. Основные параметры магнитных материалов
- 14. Расчёт электромагнитных элементов преобразовательных устройств. Методика расчёта трансформатора. Порядок расчета
- 15. Расчёт электромагнитных элементов преобразовательных устройств. Дроссели с постоянной составляющей индукции. Методика расчёта дросселя
- 16. Методика расчёта дросселя с постоянной составляющей индукции. Порядок расчета
- 17. Расчёт электромагнитных элементов преобразовательных устройств. Дроссель переменного тока. Методика расчёта дросселя переменного тока
- 18. Расчёт электромагнитных элементов преобразовательных устройств. Особенности расчета дросселя фильтра синфазных помех
- 19. Электромагнитная совместимость в электроэнергетике. Общие понятия
- 20. Высшие гармоники в сетях электроснабжения 0,4 кВ. Негативное воздействие высших гармоник
- 21. Нормативы по ЭМС технических средств. Количественная оценка ЭМС технических средств
- 22. Каналы проникновения электромагнитных помех в импульсных преобразователях. Меры по уменьшению электромагнитных помех в системах питания
- 23. Практические методы уменьшения кондуктивных и излучаемых помех
- Методы уменьшения индуцированных помех и дополнительные меры повышения
 ЭМС
- 25. Методы и устройства повышения ЭМС преобразователей на низких частотах
- 26. Входные выпрямители со сглаживающими С и L фильтрами
- 27. Входные выпрямители со сглаживающим L-С фильтром
- 28. Однофазный мостовой выпрямитель с повышенным коэффициентом мощности

- 29. Повышение коэффициента мощности при групповом соединении выпрямителей
- 30. Активные корректоры коэффициента мощности (ККМ) и их разновидности
- 31. Активные корректоры коэффициента мощности (ККМ). Однофазный ККМ с дросселем в цепи постоянного тока
- 32. Управление однофазным ККМ
- 31. Трёхфазный ККМ (выпрямитель Виенна)
- 32. Широтно-импульсная модуляция (ШИМ). Назначение, структура, принцип действия широтно-импульсного модулятора.
- 33. Автономные инверторы напряжения с ШИМ. Полумостовой АИН с ШИМ
- 34. Однофазный мостовой АИН с синусоидальной ШИМ
- 35. Трехфазный мостовой АИН с синусоидальной ШИМ
- 36. Ток, потребляемый АИН при синусоидальной ШИМ
- 37. Метод увеличения выходного напряжения АИН
- 38. Предмодуляция на частоте третьей гармоники выходного напряжения
- 39. Принцип реализации векторной ШИМ
- 40. Трехфазный активный выпрямитель напряжения (АВН) принцип работы, векторные диаграммы
- 41. Структура, принцип действия системы управления трехфазным АВН
- 42. Многоуровневые АИН с привязкой средней точки через разделительные диоды
- 43. Многоуровневые АИН с плавающими конденсаторами
- 44. Каскадные многоуровневые преобразователи частоты устройство, принцип

Микропроцессорные системы в электроприводах

- 1. Общие вопросы языка Си. Переменные, объявляемые пользователем. Типы переменных. Область видимости переменной. Область размещения переменной. Регистры специального назначения микроконтроллера SFR.
- 2. Операции с переменными и регистрами микроконтроллера в языке Си. Обзор стандартных операций с регистрами (запись в регистр, чтение значения регистра, установка в единицу нужных разрядов, сброс разрядов регистра, проверка разряда на логическую единицу или логический ноль, изменение состояния бита регистра на противоположное). Арифметика и логика языка Си.
 - 3. Операторы языка Си. Назначение и синтаксис операторов.
- 4. Функции языка Си. Назначение, структура и оформление функций. Функция обработчика прерывания. Структура программы.

- 5. Отличительные характеристики и описание выводов микроконтроллера MSP430F1611 семейства MSP430 .
 - 6. Архитектура микроконтроллера MSP430F1611.
 - 7. Центральное процессорное устройство (ЦПУ) .
 - 8. Модуль тактирования.
- 9. Порты ввода/вывода в MSP430. Регистры ввода PxIN, вывода PxOUT, направления PxDIR, выбора функции PxSEL, выбора фронта прерывания PxIES, разрешения прерывания PxIE, флага прерывания PxIFG.
- 10. Адресное пространство. Адреса ресурсов микроконтроллера: регистров специального назначения (SFR); 8-разрядных периферийных модулей; 16-разрядных периферийных модулей; ОЗУ; Flash-память.
- 11. Методы адресации. Система и формат команд. Регистровый, индексный, символьный, абсолютный, косвенный регистровый, косвенный автоинкрементный, прямой режимы адресации. Формат команд с двойным операндом, одиночным операндом и команд перехода.
- 12. Системы прерывания микроконтроллера MSP430F1611. Классификация прерываний микроконтроллера MSP430F1611. Источники прерываний, флаги и векторы.
- 13. Прерывание от внешних событий. Регистры разрешения прерываний IE1 и IE2. Реги-стры флагов прерываний IFG1 и IFG2.
 - 14. Прерывание от таймера А. Регистры TACTL, TACCTLx, TAIV.
 - 15. Прерывания сторожевого таймера. Регистр WDTCTL.
- 16. Структура и функционирование таймера А. Блок-схема таймера А. Режимы работы таймера А(остановка, вверх, непрерывный, вверх/вниз). Режимы захвата и сравнения. Режимы вывода (вывод, установка, переключение/сброс, установка/сброс, переключение, сброс, переключение/установка, сброс/установка).
- 17. Модуль 12-разрядного АЦП. Блок схема АЦП12. Результат преобразования. Режимы преобразования АЦП12. Регистры ADC12CTL0, ADC12CTL1, ADC12IFG, ADC12IE, ADC12IV, ADC12MEM0-15, ADC12MCTL0-15.
 - 18. Проектирование микропроцессорной системы с помощью PROTEUS.

Теория современного автоматизированного электропривода

- 1. Механический характеристики двигателя постоянного тока
- 2. Особенности работы двигателя постоянного тока (ДПТ)
- 3. ДПТ с независимым возбуждением
- 4. ДПТ с последовательным возбуждением

- 5. ДПТ с параллельным возбуждением
- 6. ДПТ со смешанным возбуждением
- 7. ЭДС и магнитное поле в ДПТ
- 8. Работа ДПТ нагрузкой на валу
- 9. Особенности перехода ДПТ с одной характеристики на другую при изменении подводимого к якорю напряжения
- 10. Особенности перехода ДПТ с одной характеристики на другую при изменении сопротивления в цепи якоря
- 11. Особенности перехода ДПТ с одной характеристики на другую при изменении величины магнитного потока
 - 12. Регулирование угловой скорости вращения изменением тока возбуждения ДПТ
- 13. Регулирование угловой скорости вращения изменением напряжения якорной цепи
 - 14. Регулирование угловой скорости изменением сопротивления в якорной цепи
 - 15. Устройство асинхронного электродвигателя (АД) с фазным ротором
 - 16. Устройство АД с короткозамкнутым ротором
 - 17. Механические характеристики асинхронного двигателя
 - 18. Определение синхронной угловой скорости
 - 19. Влияние изменения напряжения сети в механическую характеристику АД
 - 20. Соединение обмотки статора по схеме «треугольник» и «звезда»
 - 21. Скольжение в асинхронном двигателе
 - 22. Законы регулирования скорости АД
- 23. Регулирование угловой скорости вращения АД путем изменения частоты питающей сети
- 24. Регулирование угловой скорости вращения АД путем введения сопротивления в роторную цепь
- 25. Регулирование угловой скорости вращения АД путем напряжения питающей сети
- 26. Регулирование угловой скорости вращения АД путем изменения числа пар полюсов
 - 27. Соѕф и КПД а асинхронном двигателе
 - 28. Вентильно машинный каскад
 - 29. Электромашинный какад
 - 30. Асинхронного вентильный каскад
 - 31. Электромеханический каскад

- 32. Методы выбора электродвигателя
- 33. Метод эквивалентного тока
- 34. Метод эквивалентного момента
- 35. Метод эквивалентной мощности
- 36. Метод средних потерь
- 37. Понятие коэффициента мощности электротехнической установки
- 38. Способы повышения коэффициента мощности в системах регулируемого электропривода (параметрические и структурные)
- 39. Устройство компенсации реактивной мощности (структура и принцип действия)

Электрические комплексы систем электроснабжения городов, промышленных предприятий и электрифицированного транспорта

- 1. Краткая характеристика электротехнического комплекса промышленных предприятий.
- 2. Краткая характеристика электротехнического комплекса городов.
- 3. Краткая характеристика электротехнического комплекса электрифицированного транспорта.
- 4. Классификация источников, приемников и преобразователей электроэнергии.
- 5. Режимы работы электроприемников.
- 6. Графики электрических нагрузок.
- 7. Методы расчета нагрузок по нагреву.
- 8. Методы расчета пиковых нагрузок.
- 9. Критерии выбора сечения электрических сетей и мощности трансформаторов.
- 10. Выбор места расположения, количества и типа трансформаторных подстанций.
- 11. Тяговые подстанции и их особенности.
- 12. Подстанции городского электротранспорта.
- 13. Выбор напряжения для распределения электроэнергии.
- 14. Схемы электроснабжения городов.
- 15. Схемы электроснабжения промышленных предприятий.
- 16. Определение токов короткого замыкания.
- 17. Электрические аппараты напряжением выше 1000 В и их выбор.
- 18. Электрические аппараты напряжением до 1000 В и их выбор.
- 19. Качество электрической энергии. Основные понятия.
- 20. Влияние качества электроэнергии на электроприемники.

- 21. Влияние электроприемников на качество электроэнергии.
- 22. Нормирование качества электроэнергии.
- 23. Электромагнитные помехи.
- 24. Электромагнитная обстановка в узлах нагрузки.
- 25. Электромагнитная совместимость электроприемников с питающей сетью.
- 26. Методы и средства улучшения качества электроэнергии.
- 27. Компенсация реактивной мощности в электротехнических комплексах.
- 28. Методы повышения надежности электроснабжения электротехнических комплексов.
- 29. Методы нормирования электропотребления.
- 30. Методы экономии электроэнергии.
- 31. Релейная защита электротехнических комплексов.

Список литературы

- 1. Фролов Ю.М. Регулируемый асинхронный электропривод: Учеб.пособие / Ю.М. Фролов, В.П. Шелякин. 2-е изд., стер. СПб.; М.; Краснодар: Лань, 2018. 462 с.
- 2. Анучин А.С. Системы управления электроприводов: учебник для вузов- М.: Издательский дом МЭИ, 2015. -373 с.
- 3. Онищенко Г.Б. Теория электропривода: Учебник/ Г.Б. Онищенко М.:ООО «Образование и исследование», 2013. 352 с.
- 4. Никитенко Г.В. Электропривод производственных механизмов: Учеб.пособие / Г. В. Никитенко. 2-е изд., испр. и доп. СПб.; М.; Краснодар: Издательство «Лань», 2013. 208 с.
- 5. Онищенко Г.Б. Электрический привод: Учебник/ Г.Б. Онищенко М.: «Академия» , 2006. 288с.
- 6. Булкин А.Е. Автоматическое регулирование энергоустановок. М.: Изд.дом МЭИ, $2009.-245~\mathrm{c}.$
- 7. Забродин Ю.С. Промышленная электроника. М.: Альянс, 2008. 496 с.
- 8. Электроника и микропроцессорная техника : Учебник / В. И. Калашников, С. В. Нефедов ; Под ред. Г.Г. Раннева. М. : Изд.центр "Академия", 2012. 368 с.
- 9. Системы электроснабжения: учебник для вузов / Г.Я. Вагин, А.Л. Куликов, А.Б. Лоскутов, Е.Н. Соснина. Нижегородский гос. техн. ун-т им. Р.Е. Алексеева. Нижний Новгород, 2019. 462 с.
- 10. Силовое оборудование тяговых подстанций железных дорог. ОАО «РЖД» М.: «Трансиздат», 2004. 384 с.
- 11. Электроснабжение и электрооборудование жилых и общественных зданий / В.И. Григорьев, Э.А. Киреева, А.П. Минтюков и др. М.: Энергоатомиздат, 2003.
- 12. Правила устройства электроустановок: 7-е изд. М.: ИЦ ЭНАС, 2011 552 с.
- 13. Герман Л.А., Субханвердиев К.С., Герман В.Л. Автоматизация электроснабжения тяговой сети переменного тока: учебное пособие. Н. Новгород. СамГУПС в Н. Новгороде, 2019. 234 с.
- 14. Электротехнический справочник. Т. 4. Использование электрической энергии / под общ. ред. профессоров МЭИ В.Г. Герасимова и др. М.: Издательство МЭИ, 2004.-696 с.
- 15. Вагин Г.Я., Лоскутов А.Б., Севостьянов А.А. Электромагнитная совместимость в электроэнергетике: учебное пособие. Нижегородский гос. техн. ун-т. Нижний Новгород, 2004. 214 с.