УДК 621.77

А.Н. Кочин, М.В. Желонкин, А.А. Головин

ВЛИЯНИЕ РЕГУЛЯРНОГО МИКРОРЕЛЬЕФА НА ЭКСПЛУАТАЦИОННЫЕ ПОКАЗАТЕЛИ ДЕТАЛЕЙ МАШИН

Нижегородский государственный технический университет им. Р.Е. Алексеева

Рассмотрены методы повышения эксплуатационных свойств деталей, рассмотрены виды чередующихся регулярных микронеровностей с полным, неполным и с отсутствием пересечением регулярных неровностей, приведено описание процесса виброобкатывания, исследованы параметры получения регулярного микрорельефа с использованием уравнения гармонических колебаний, разработано устройство для повышения износостойкости коренных и шатунных шеек коленчатых валов с описанием уравнений движения деформирующих элементов.

Ключевые слова: пара трения, регулярный микрорельеф, частично регулярный микрорельеф, коэффициент трения, вибронакатывание, обработка наружных цилиндрических поверхностей.

Эксплуатационные свойства деталей машин (износостойкость, долговечность, усталостная прочность и др.) во многом зависят от качества обработки поверхностей контактирующих деталей, к которым относятся геометрические параметры поверхностей (шероховатость и волнистость) и физико-механических свойств поверхностного слоя (микротвердость, остаточные напряжения и структурный и фазовый состав). Поверхностный слой детали или качество поверхности формируется под воздействием последовательно применяемых различных технологических методов, к которым относятся точение, фрезерование, шлифование и другие методы. В результате этих воздействий на обрабатываемой поверхности образовывается относительно тонкий поверхностный слой, отличающийся по своим признакам от нижележащих слоев основного металла и фактически определяющий ресурс работы детали.

Комплексной характеристики состояния поверхностного слоя (шероховатость, волнистость и физико-механическое состояние поверхностного слоя) до настоящего времени не разработано, поэтому качество поверхности оценивается по каждой составляющей отдельно, хотя их взаимодействие между собой отмечается многими исследователями. Например, упрочнение поверхностного слоя, проводимое с целью повышения износостойкости поверхности, в значительной степени связано с улучшением геометрических параметров поверхности, а также с повышением микротвердости поверхностного слоя, которые формируются под действием обрабатывающего инструмента. Повышение эксплуатационных свойств поверхностей контактирующих деталей обеспечивается различными технологическими методами, которые подразделяются на шести основных классов:

- 1) упрочнение с образованием износостойкой пленки на поверхности детали (хромирование, оксидирование, фосфатирование и др.).
- 2) упрочнение с изменением химического состава поверхностного слоя (борирование, цианирование, нитроцементация и др.);
- 3) упрочнение изменением структуры поверхностного слоя (лазерная закалка, дробеструйная обработка, вибрационная обработка и др.);
- 4) упрочнение с изменением энергетического запаса поверхностного слоя (термообработка, обработка магнитным полем и др.);
- 5) упрочнение с изменением микрогеометрии поверхностного слоя и наклепа (накатывание поверхности, обкатывание поверхности и др.);
- 6) упрочнение с изменением структуры детали по всему объёму (отпуск, улучшение, закалка холодом и др.).

Особое место среди этих методов занимает виброобкатывание – процесс, заключаю-

[©] Кочин А.Н., Желонкин М.В., Головин А.А., 2015.

щийся в перемещении деформирующего инструмента по поверхности детали, которому дополнительно сообщается осциллирующее колебание. Параметры вибрации при обработке, например, наружных цилиндрических поверхностей: частота вращения заготовки, число осциллирующих двойных ходов, амплитуда, равная длине осциллирующего хода, подача на оборот заготовки и диаметр шарика. Режим обработки: рабочее давление выбираются в зависимости от диаметра шарика, обрабатываемого материала и жесткости металлообрабатывающего станка. Обработка ведется, как правило, на невысоких скоростях, что позволяет обеспечить повышение микротвердости поверхностного слоя на 10–25% и сжимающих остаточных напряжений в 1,3–1,7 раза. Кроме того, улучшается точность геометрической формы обрабатываемой поверхности и повышается класс шероховатости.

В результате сложного взаимодействия заданных параметров на обрабатываемой поверхности формируется микрорельеф, состоящий из синусоидальных канавок различной композиции и плотности. Основные виды канавок изображены на рис. 1. Образование на обработанной поверхности системы канавок, пересекающихся между собой с определенной закономерностью, улучшает процесс смазки трущихся пар. Установлено, что такие системы образуют искусственные «масляные карманы», в которых удерживается смазка, препятствующая «схватыванию» контактирующих поверхностей трущихся пар.

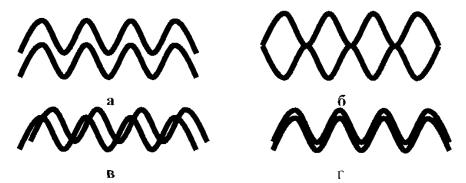


Рис. 1. Основные виды синусоидальных канавок:

a – канавки не пересекаются; δ – канавки касаются; ϵ – канавки пересекаются; ϵ – канавки накладываются

При виброобкатке наружных цилиндрических поверхностей обрабатывающий инструмент формирует на обрабатываемой поверхности канавку в виде синусоиды. Такая форма получается за счет возвратно-поступательного движения обрабатывающего инструмента по вращающейся наружной цилиндрической поверхности заготовки. Математически форма канавки описывается уравнением гармонического колебания

$$X = A \cdot \sin(\omega t + \varphi_0),$$

где A — амплитуда колебаний; $(\omega t + \varphi_0)$ — фаза колебаний; t — время; ω — циклическая частота; φ_0 — начальная фаза колебаний.

Формирование нужного микрорельефа на обрабатываемой поверхности заготовки с целью образования «масляных карманов» достигается чередованием с определенным шагом следов обрабатывающего инструмента, полученных серией рабочих ходов. Каждый последующий рабочий ход должен отличаться от предыдущего начальной фазой колебаний, изменяющейся за счет разности между длиной волны рабочего хода λ и длиной окружности обрабатываемой наружной цилиндрической поверхностью заготовки πd . В этом случае на обрабатываемой поверхности образуются следы от действия обрабатывающего инструмента в виде синхронных колебаний, имеющих одни и те же параметры по амплитуде, частоте, периоду, но отличающихся тем, что последующий след формируется на поверхности с некоторым запаздыванием (рис. 2, δ).

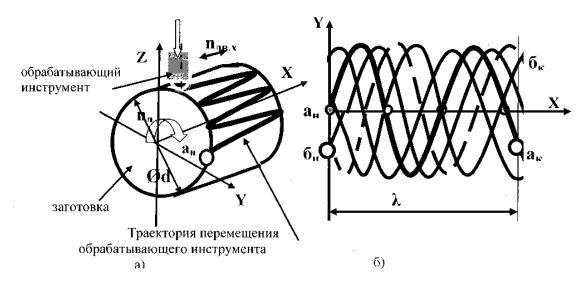


Рис. 2 Формирование микрорельефа поверхностного слоя: a — схема рабочих движений при виброобработке; δ — последовательность формирования микрорельефа поверхностного слоя

На рис. 2, δ первый рабочий ход обработки поверхности заготовки начинается в точке $a_{\rm H}$. Длина волны λ и длина окружности заготовки πd связаны между собой коэффициентом κ , т.е. $\lambda = \kappa \cdot \pi d$. Если κ – целое число, то следующий рабочий ход начнется в той точке обрабатываемой поверхности, с которой начинался первый рабочий ход, т.е. в точке со смещением в точке $a_{\rm H}$. В этом случае рабочий инструмент будет работать по уже пройденной траектории. При дробном значении коэффициента κ рабочий ход обрабатывающего инструмента будет начинаться со смещением относительно точки $a_{\rm H}$ (общепринятый термин — запаздывание), т.е. в точке $\delta_{\rm H}$. Чем меньше величина запаздывания, тем ближе будут располагаться следы на обрабатываемой поверхности. Расстояние запаздывания ($a_{\rm H}\delta_{\rm H}$) зависит от диаметра обрабатывающего инструмента (шарика) и глубины его внедрения (силы давления). Последующие рабочие ходы будут выполняться с таким же смещением. В результате на обрабатываемой поверхности образуется сетка следов, смещенных один относительно другого с постоянным шагом, т.е. практически одинаковый микрорельеф по всей поверхности.

С целью практического использования преимуществ виброобкатки было разработано устройство для повышения износостойкости коренных и шатунных шеек коленчатых валов. Устройство содержит деформирующие элементы, дополнительно снабженные блоком обработки из воздействующих головок. Головки соединены трубками с емкостью гидропластмассы и с салазками продольного направления, которые, в свою очередь, соединены с виброгенератором. Внутри воздействующих головок находятся деформирующие элементы, расположенные в два ряда с относительным смещением, с толкателем и выступами корпуса, в которых деформирующие элементы располагаются с возможностью удержания их от выпадания, а также приводным блоком – двигатель, соединенный с редуктором, на выходном валу которого крепится патрон; центр расположен соосно патрону.

Приспособление работает следующим образом. Коленчатый вал 1 устанавливается в центр 2 и закрепляется с помощью патрона 3. Главное движение сообщается через двигатель 4 с редуктором 5. К шейкам подводится блок для обработки, состоящий из воздействующих головок с шариками 6, системы салазок продольного направления 7, на которую воздействует виброгенератор 8. Виброгенератор сообщает осциллирующее движение двум рядам шариков 9, разделенных сепаратором 10, их расположение зависит от выбора желаемого микрорельефа и находится с помощью математической модели. Необходимую силу прижатия обеспечивает толкатель 11, на который воздействует гидропластмасса 12, подаваемая под давлением по трубкам 13 в головки с шариками.

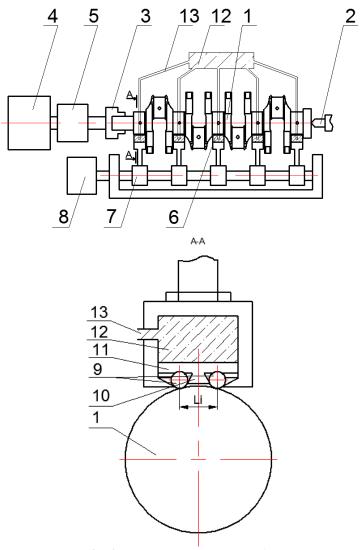


Рис. 3. Конструкция приспособления

Прижимная головка с шариками содержит два ряда роликов, разделенных сепаратором. Расстояние между рядами, радиус шариков и их количество определяется коэффициентами (согласно ГОСТ 24773-81) осевого шага неровностей S_0 и величиной смещения i в уравнениях $y1(x) = A \cdot \sin\left[2\pi\left(\frac{x}{S_k}\right)\right]$ для первого шарика, $y2(x) = A \cdot \sin\left[2\pi\left(\frac{x}{S_k}\right)\right] + 2S_0$ — для второго шарика, $y3(x) = A \cdot \sin\left[2\pi\left(\frac{x}{S_k}\right)\right] + 4S_0$ — для третьего, $y4(x) = A \cdot \sin\left[2\pi\left(\frac{x}{S_k}\right)\right] + 4S_0$ — четвертого шарика первого ряда и уравнениями $y11(x) = A \cdot \sin\left[2\pi\left(\frac{x}{S_k}\right) + 2\pi i\right] + S_0$, $y22(x) = A \cdot \sin\left[2\pi\left(\frac{x}{S_k}\right) + 2\pi i\right] + 3S_0$, $y33(x) = A \cdot \sin\left[2\pi\left(\frac{x}{S_k}\right) + 2\pi i\right] + 5S_0$, $y44(x) = A \cdot \sin\left[2\pi\left(\frac{x}{S_k}\right) + 2\pi i\right] + 7S_0$ для первого - четвертого шариков второго ряда соответственно. Оптимальное значение коэффициента величины смещения i, при котором обеспечивается наибольшее пересечение траекторий, принято 0,4—0,5. При заданном значении i расстояние между рядами шариков Li определяется как отношение радиуса шарика r_{tt} к величине смещения i ($Li=\frac{r_{tt}}{i}$). Радиус шарика определяется как отношение длины шейки коленчатого вала L_{tt} к количеству шариков, умноженному на $2(2n_{tt})$, и численно равен осевому шагу неровностей S_0 ($r_{tt} = S_0 = \frac{L_{tt}}{2 \cdot n_{tt}}$). Осциллирующее движение виброгенератора также задается параметрами кругового шага неровностей S_k и амплитудой осциллирующего движения инструмента A. При этом параметр A должен быть больше половины осевого шага неровно-

стей $S_0(A>S_0/2)$, а осевой шаг неровностей S_0 — меньше или равен межосевому расстоянию шариков первого и второго рядов ($S_0 \le R_{12}$). Аргумент x в уравнении равен длине окружности обрабатываемой шейки. На рис.4 представлены параметры расположения шариков в воздействующих головках.

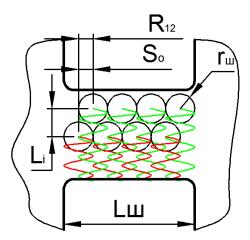
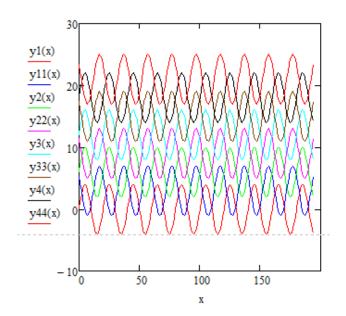



Рис. 4. Параметры расположения шариков в воздействующих головках

Математическая модель траекторий обработанной поверхности при параметрах S_k =20; A=4; i=0,4; S0=3; x=194 показана на рис. 5.

Рис. 5. Модель траекторий обработанной поверхности: y1(x), y2(x), y3(x), y4(x) — траектория движения шариков первого ряда; y11(x), y22(x), y33(x), y44(x) — траектория движения шариков второго ряда

Практическое использование разработанного устройства в производственном процессе изготовления и ремонта коленчатых валов может повысить эксплуатационные качества деталей за счет:

- образования на рабочей поверхности деталей системы канавок и «масляных карманов», улучшающих процесс смазки трущихся поверхностей;
- сокращения времени приработки контактирующих поверхностей;
- образования напряжений сжатия в результате поверхностного наклепа рабочих поверхностей;
- упрочнения поверхностного слоя рабочих поверхностей.

Библиографический список

- 1. **Полетаев, В.А.**Методы обеспечения требуемого качества поверхностного слоя деталей машин / В.А. Полетаев. Иваново: ИГЭУ, 2010.
- 2. **Степанова, Т.Ю**. Технологии поверхностного упрочнения деталей машин / Т.Ю. Степанова. Иваново: ИГЭУ, 2009. 64 с.
- 3. **Овсеенко, А.Н.** Технологическое обеспечение качества изделий машиностроения / А.Н. Овсеенко, В.И. Серебряков, М.М. Гаек. М.: Янус-К, 2004. 296 с.

Дата поступления в редакцию 04.06. 2015

A. N. Kochin, M. V. Zhelonkin, A. A. Golovin

EFFECTOFREGULARMICRORELIEFON PERFORMANCE MACHINE PARTS

Nizhny Novgorod state technical university n. a. R. E. Alexeev

Purpose: Improving the performance of machine parts.

Design/methodology/approach: Research the regular microrelief parameters of its application.

Findings: Creating a useful model for the treatment of crankshaft journals and the mathematical model with the processing parameters.

Research limitations/implications: Increase of operational properties of machine parts by application of methods of plastic deformation.

Originality/value: The article has scientific novelty and practical importance because at the moment the topic enhance the characteristics of the treated surfaces are paying a lot of attention.

Key words: friction pair, regular microrelief, partially regular microrelief, friction coefficient, vibro-knurling, processing of external cylindrical surfaces.