УДК 53

Ю.П. Бодунова¹, С.А. Коноплев², В.Б. Лисин¹

ВЗАИМОДЕЙСТВИЕ НЕЛИНЕЙНЫХ ЛОКАЛИЗОВАННЫХ ВОЛН В ПУЗЫРЬКОВОЙ СУСПЕНЗИИ

Нижегородский филиал института машиноведения РАН¹, Нижегородский государственный технический университет им. Р.Е. Алексеева²

Численными и аналитическими методами исследовано распространение и взаимодействие нелинейных солитоноподобных волн в жидкости с пузырьками газа, описываемые двухволновым уравнением Накорякова-Покусаева-Шрейбера (НПШ). Показано, что они существуют в окне «непрозрачности» для линейных волн и при встречном взаимодействии могут распадаться на вторичные локализованные волны.

Ключевые слова: пузырьковая суспензия, двухволновое уравнение, локализованная волна, солитон, встречное столкновение, обгонное взаимодействие.

1. Постановка задачи

Среда, в которой скорость распространения возмущений зависит от частоты осцилляции, называется диспергирующей. Таким свойством обладают, в частности, газожидкостные смеси. Простейшей моделью в данном случае является идеальная, покоящаяся, неограниченная по объему жидкость с равнораспределенными в ней газовыми пузырьками, сохраняющими массу и сферическую форму. Пузырьки находятся на достаточном удалении друг от друга, так что непосредственные столкновения отсутствуют. Эффективные радиусы присоединенных масс жидкости меньше расстояния между пузырьками, и взаимодействие осуществляется только через поле давлений. Система уравнений, описывающих распространение возмущений в такой среде, состоит из уравнения движения смеси, уравнения непрерывности и уравнения осцилляции пузырьков [1-3]:

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = -\frac{1}{\rho} \frac{\partial p}{\partial x}, \qquad (1)$$

$$\frac{\partial \rho}{\partial t} + \frac{\partial \rho u}{\partial x} = 0,$$

$$R\frac{d^2R}{dt^2} + \frac{3}{2}\left(\frac{dR}{dt}\right)^2 = \frac{1}{\rho_1}(p_2 - p_\infty),$$
(2)

где u, p и $\rho = (1 - \varphi)\rho_1 + \varphi\rho_2$ – соответственно, скорость, давление и плотность смеси; ρ_1 , ρ_2 – плотности жидкости и газа; φ – объемная доля газовых пузырьков в смеси; R – радиус пузырьков, p_2 – давление газа в пузырьках; $p_{\infty} = \text{const}$ – давление газа вне пузырьков. Изменение давления в газовом пузырьке связано с изменением плотности смеси соотношением

$$p_{2} = c_{0}^{2} \left[1 + \frac{(\gamma + 1)}{2\varphi_{0}\rho_{0}} \rho \right] \rho.$$
(3)

Здесь c_0 – скорость звука в невозмущенной смеси, а остальные обозначения совпадают с обозначениями в [1]. Система (1)-(3) может быть приведена к одному уравнению:

$$\frac{\partial^2 p}{\partial t^2} - c_0^2 \frac{\partial^2 p}{\partial x^2} + \beta \frac{\partial^2}{\partial t^2} \left(\frac{\partial^2 p}{\partial t^2} - c_1^2 \frac{\partial^2 p}{\partial x^2} \right) = \alpha \frac{\partial^2 p^2}{\partial t^2}, \qquad (4)$$

[©] Бодунова Ю.П., Коноплев С.А., Лисин В.Б., 2010.

где c_1 – скорость звука в чистой жидкости; β – параметр дисперсии, $\alpha = (\gamma + 1)/2\gamma p_0$ – коэффициент нелинейности. Уравнение (4) похоже на уравнение Буссинеска, но в отличие от него имеет четвертую производную по времени и описывает два типа волн, сильно взаимодействующих в окрестности внутреннего резонанса. Назовем его уравнением НПШ (Накорякова-Покусаева-Шрейбера), по первым буквам фамилий авторов, впервые применивших (4) для изучения распространения и взаимодействия нелинейных волн в жидкостях с газовыми пузырьками. Уравнение (4) содержит два волновых оператора со скоростями c_0 и c_1 . Основной сигнал распространяется со скоростью c_0 , а возмущения, описываемые оператором высшего порядка, выделяют предвестник сигнала, который распространяется со скоростью c_1 .

Уравнение НПШ является сложным для аналитического и численного исследования, поэтому обычно рассматривают его одноволновый вариант, сводящийся к уравнению Кортевега-де Вриза [1, 3-5]. Однако, как показывает анализ, свойства нелинейных волн, полученных в рамках одноволнового приближения, отличаются от свойств стационарных волн полного уравнения [7, 8] и, кроме того, в рамках одноволнового приближения нельзя исследованых волн при встречных столкновениях [9, 10]. В настоящей работе проведено исследование процессов распространения и взаимодействия локализованных ВОЛН ПРИ ВСТРЕЧНИХ СТОЛКНОВЕНИЯХ [9, 10]. В настояванных волн в рамках полного уравнения НПШ.

2. Анализ дисперсионных свойств линейных волн

В линейном приближении свойства решений уравнения (4) полностью определяются его дисперсионными свойствами [6]. Подставляя в него решение в виде бегущей волны $p \propto \exp[i(\omega t - kx)]$, находим, что ее частота ω и волновое число k связаны дисперсионным соотношением (рис. 1, *a*):

$$\omega^{2} - c_{0}^{2}k^{2} - \frac{c_{0}^{2}}{c_{1}^{2}\omega_{0}^{2}}\omega^{2} \left(\omega^{2} - c_{1}^{2}k^{2}\right) = 0.$$
(5)

Здесь $\omega_0^2 = c_0^2 / \beta c_1^2 = 3\gamma p_0 / \rho_1 R_0^2$ – квадрат резонансной частоты Миннаерта [1]. Дисперсионное соотношение можно записать также и для фазовой скорости волны $v_f = \omega/k$ (рис. 1, δ):

$$\frac{v_f^2}{c_0^2} = \frac{1 - \tilde{\omega}^2}{1 - \tilde{\omega}^2 c_0^2 / c_1^2},$$
(6)

где введена безразмерная частота $\tilde{\omega} = \omega/\omega_0$.

Рис. 1. Дисперсионные зависимости для суспензии: *a* – связь между волновым числом и частотой; *б* – зависимость фазовых скоростей от частоты

Из рисунков видно, что в отличие от уравнения Буссинеска, уравнение НПШ обладает двумя дисперсионными ветвями, между которыми имеется окно «непрозрачности» в интервале частот от $\omega = \omega_0$ до $\omega = \omega_* = \omega_0(c_1/c_0)$ и в интервале скоростей от c_0 до c_1 . Иначе говоря, пузырьковая суспензия является фильтром акустических волн. В диапазоне частот от $\omega = \omega_0$ до $\omega = \omega_* = \omega_0(c_1/c_0)$ формула (6) дает для скорости чисто мнимое значение, и поэтому волна давления является не распространяющейся. Фазовая скорость низкочастотной моды всегда меньше c_0 , а высокочастотной моды всегда больше c_1 . При $\tilde{\omega} \rightarrow 1$ фазовая скорость низкочастотной волны уменьшается до нуля. В этом случае каждый пузырек в системе осциллирует со своей собственной частотой, и фазовая скорость равна нулю. При частоте колебаний $\omega = \omega_*$ получаем бесконечно большое значение фазовой скорости волны в чистой жидкости (рис. 1, δ).

3. Нелинейные уединенные волны

Будем искать решение уравнения (4) в виде стационарной волны:

$$p(x,t) = p(\xi = x - Vt).$$
⁽⁷⁾

Здесь $\xi = x - Vt$ — бегущая координата; V — скорость стационарной волны, подставив (7) в уравнение (4), последнее запишется в виде

$$p_{\xi\xi\xi\xi}V^{2}\left(V^{2}-c_{1}^{2}\right)+\frac{1}{\beta}p_{\xi\xi}\left(V^{2}-c_{0}^{2}\right)-\frac{\alpha}{\beta}V^{2}\left(p^{2}\right)_{\xi\xi}=0.$$
(8)

Проинтегрируем (8) по переменной ξ два раза и, учитывая условия локализации волны $|p| \rightarrow 0, |p_{\xi}| \rightarrow 0$ и $|p_{\xi\xi}| \rightarrow 0$ при $\xi \rightarrow \pm \infty$, получим

$$p_{\xi\xi} + \frac{V^2 - c_0^2}{\beta V^2 (V^2 - c_1^2)} p - \frac{\alpha}{\beta (V^2 - c_1^2)} p^2 = 0.$$
(9)

Коэффициенты уравнения (9) являются функциями скорости стационарной волны:

$$a = \frac{V^2 - c_0^2}{\beta V^2 (V^2 - c_1^2)}, \qquad b = -\frac{\alpha}{\beta (V^2 - c_1^2)}.$$
(10)

Тогда (9) можно записать в следующем виде:

$$p_{\xi\xi} + ap + bp^2 = 0$$

Знак первого коэффициента меняется дважды при переходе скорости стационарной волны через значения C_0 и C_1 , а знак второго – один раз.

Структура фазовой плоскости уравнения (9) зависит от параметров V, c_0 и c_1 . На рис. 2 показаны фазовые портреты динамической системы для различных соотношений между ними.

Рис. 2. Фазовые портреты динамической системы

Из рис. 2 видно, что решение в виде уединенной волны с нулевыми асимптотиками при $\xi \rightarrow \pm \infty$ возможно лишь для случая, когда ее скорость удовлетворяет условию $c_1 < V < c_2$. Это означает, что нелинейные локализованные волны могут существовать в окне «непрозрачности» для линейных возмущений (рис. 1, δ).

Будем искать решение в виде локализованной волны

$$p(\xi) = \frac{A}{ch^2(\xi/\Delta)}.$$
(11)

Оно удовлетворяет уравнению (9), если его ширина Δ , амплитуда A и скорость V связаны двумя соотношениями

$$\Delta = 2\sqrt{\frac{\beta V^2 (c_1^2 - V^2)}{V^2 - c_0^2}}, \qquad A = \frac{3}{2\alpha} \left(1 - \frac{c_0^2}{V^2}\right). \tag{12}$$

Из соотношений (12) следует, что в пузырьковой суспензии стационарными могут быть только воны с положительным градиентом давления (A > 0), т.е. волны сжатия. На рис. 3 приведены графики зависимости ширины (рис. 3, a) и амплитуды уединенной волны (рис. 3, δ) от скорости.

Рис. 3. Связь между параметрами уединенной волны: *а* – зависимость ширины от скорости; *б* – зависимость амплитуды от скорости

Для анализа взаимодействия нелинейных волн удобно ввести параметр подобия

$$\sigma = \frac{\alpha A \Delta^2}{6\beta (c_1^2 - V^2)}.$$
(13)

Для стационарной волны (солитона) он равен единице. При $\sigma < 1$ преобладают эффекты дисперсии над нелинейностью, и начальное возмущение с течением времени расплывается, превращаясь в квазилинейный волновой пакет. При значениях $\sigma > 1$ преобладают нелинейные эффекты, и начальное возмущение по мере распространения может распадаться на вторичные уединенные волны и квазилинейный волновой пакет [9, 10].

4. Результаты численного моделирования

Для численного моделирования уравнения (4) использовались неявные трехслойные разностные схемы с порядком аппроксимации $O(\tau^2, h^2)$. Реализовывалась данная схема с использованием метода прогонки. При численном моделировании начальные условия задавались в соответствии с решениями (11)-(12), а граничные условия реализовывались с помощью введения фиктивных узлов, дающих ту же точность аппроксимации, что и разностная схема. Задача решалась со следующими параметрами: шаг по координате был равен h = 0,07,

т.е. на длительность солитона приходилось примерно $\Delta/h \approx 9$ пространственных шагов по сетке. Шаг по времени находился из условия устойчивости разностной схемы и выбирался равным $\tau = 0,0008$, т.е. на один шаг по пространственной координате приходилось примерно девять шагов по времени.

Анализ результатов численного моделирования показал, что при $\sigma = 1$ начальное возмущение совпадает с солитоном, поэтому с течением времени оно не изменяло своей формы, распространялось со скоростью, зависящей от амплитуды, и было устойчиво относительно малых возмущений.

Эволюция слабонелинейной волны

В случае, когда $\sigma < 1$ волна не является стационарной. На рис. 4 представлены результаты численных расчетов нелинейной эволюции волны давления (рис. 4, *a*) и интеграла от давления (рис. 4, *b*) при параметре подобия $\sigma = 0,1$. В качестве начального условия в начале координат задавалось избыточное давление. При этом интеграл от давления представлял собой «ступеньку». С течением времени начальное возмущение распадалось на две волны, бегущие в противоположных направлениях. Из графиков видно, как от начальной «ступеньки» давления отделяется слабое квазигармоническое возмущение, бегущее с большей скоростью.

Рис. 4. Образование бегущих волн из начального возмущения давления: a -эволюция волны давления при $\sigma = 0,1$; $\delta -$ эволюция интеграла от давления при $\sigma = 0,1$

Распад начального возмущения на солитоны

Если параметр подобия $\sigma > 1$, то начальное условие распадается на несколько уединенных волн («солитонов»). Для исследования этого процесса амплитуда начальной волны задавалась равной A = 30, а ее ширина Δ выбиралась из условия, чтобы параметр подобия (13) изменялся в пределах $\sigma = 3,...,8$. Вводился параметр, характеризующий временную длительность солитона $T_0 = \Delta/V$, в нашем случае задавалось $T_0 \approx 81\tau$, т.е. солитон смещался на расстояние, равное своей длительности за 81 шаг по времени. Шаг по времени находился из условия устойчивости разностной схемы. Абсолютные значения шагов по времени и координате были те же, что и в предыдущем случае.

Профиль начального возмущения мог задаваться в виде солитоноподобной (колоколообразной) волны (11), либо в виде полусинусоиды

$$p(x,0) = A\sin(\frac{x}{\Delta}), \quad x < 100,$$

$$p(x,0) = 0, \quad x > 100,$$
(14)

либо в виде сглаженной полусинусоиды

$$p(x,0) = A(1 - \cos(\frac{x}{\Delta})), \quad x < 100,$$

$$p(x,0) = 0, \quad x > 100.$$
(15)

При задании начального условия в виде (14) на «подошве» волны, т.е. при p = 0, имелись разрывы производных, а при начальном условии вида (15) их не было. Число солитонов, образующихся из начального возмущения, зависело от величины параметра подобия. Так, на рис. 5 показан результат нелинейной эволюции начального импульса (14), распавшегося на семь «солитонов» через промежуток времени $t_1 = 5 \cdot 10^4 \tau$.

Рис. 5. Распад начального возмущения на семь солитонов

Рис. 7. Встречное взаимодействие уединенных волн

Взаимодействие уединенных волн

Для исследования взаимодействия волн начальные условия задавались в виде двух солитонов (11) с различными амплитудами, а их центры масс были разнесены на расстояние $\Delta x = |\mu_2 - \mu_1|$:

$$p_0(x,t) = A_1 ch^{-2} \left(\frac{x - V_1 t - \mu_1}{\Delta_1}\right) + A_2 ch^{-2} \left(\frac{x - V_2 t - \mu_2}{\Delta_2}\right).$$
(16)

Здесь $\mu_{1,2}$ – координаты центров масс солитонов при t = 0. Шаги по времени и координаты были выбраны следующим образом: h = 0,07, $\tau = 0,0008$. Величины амплитуд начальных возмущений были равны $A_1 = 30$, $A_2 = 12$, а их ширина выбиралась так, чтобы параметры подобия обеих волн были равны единице. На рис. 6 представлены результаты моделирования обгонного взаимодействия двух солитонов.

Из рис. 6 видно, что после выхода из области взаимодействия солитоны сохраняют свою индивидуальность, что находится в полном соответствии с теорией солитонов.

Однако нелинейные волны уравнения (9) обладают свойствами, отличающими их от классических солитонов. А именно, при встречных столкновениях они могут расщепляться, порождая вторичные локализованные волны, если их амплитуды превышают некоторое критическое значение. Так, на рис. 7 приведены результаты численных расчетов взаимодействия однополярных уединенных волн при встречных столкновениях. Начальные скорости солитонов равнялись $V_1 = -2$, и $V_2 = 2,2$. Из рис. 7 видно, что первичные локализованные волны после взаимодействия расщеплялись, порождая вторичные локализованные волны меньшей амплитуды.

Заключение

Проведенные исследования показали, что солитоноподобные волны в жидкости с пузырьками газа, описываемые двухволновым уравнением (4), могут существовать только в окне «непрозрачности» для линейных волн. Во многом они похожи на солитоны, описываемые уравнением Кортевега-де Вриза, и однако при взаимодействиях они проявляют новые свойства, отличающие их от классических солитонов.

Авторы признательны А.И. Потапову за помощь в постановке задачи и обсуждении полученных результатов. Работа выполнена при финансовой поддержке грантом РФФИ (проект, 09-02-97053-р_поволжье).

Библиографический список

- 1. **Накоряков, В.Б.** Волновая динамика газо- и парожидкостных сред / В.Б. Накоряков, Б.Г. Покусаев, И.Р. Шрейбер. – М.: Энергоатомиздат, 1990. – 249 с.
- 2. **Наугольных, К.А.** Нелинейные волновые процессы в акустике / К.А. Наугольных, Л.А. Островский. М.: Наука, 1990. 239 с.
- 3. **Нигматулин, Р.И.** Динамика многофазных сред / Р.И. Нигматулин. М.: Наука, 1987. Т. 2. 360 с.
- 4. Ким, Д.Ч. Физическая природа акустических солитонов в жидкости с распределенными пузырьками газа / Д.Ч. Ким // ДАН, 2008. Т. 418. Вып. 5. С. 619–623.
- 5. Ким, Д.Ч. К теории акустических солитонов в жидкости с распределенными пузырьками газа / Д.Ч. Ким // ЖТФ, 2007. Т. 77. Вып. 6. С. 8–12.
- 6. **Островский, Л.А.** Введение в теорию модулированных волн / Л.А. Островский, А.И. Потапов. – М.: Физматлит, 2003. – 400 с.
- 7. Алексеев, В.Н. Распространение стационарных звуковых волн в пузырьковых средах / В.Н. Алексеев, С.А. Рыбак // Акуст. журн. 1995. Т. 41. Вып. 5. С. 690–698.
- Potapov, A.I. Normal waves in a nonlinear dispersive medium / A. I. Potapov, Yu.P. Bodunova // Nonlinear Dynamics / Proc. of the Second Intern. Conference. – Kharkov National Technical University. 2007. P. 231–236.

- Коноплев, С.А. Численное моделирование взаимодействия нелинейных уединенных волн в среде с пространственной дисперсией // Проблемы механики и акустики сред с микро- и наноструктурой: НАНОМЕХ-2009: тез. докл. Первой Всероссийской конференции / НГТУ. – Н. Новгород. 2009. С. 116–124.
- Бодунова, Ю.П. Распространение и взаимодействие нелинейных волн в среде с микроструктурой / Ю.П. Бодунова, С.А. Коноплев // Проблемы механики и акустики сред с микро- и наноструктурой: НАНОМЕХ-2009: тез. докл. первой Всероссийской конференции / НГТУ. – Н. Новгород. 2009. С. 111–112.

Дата поступления в редакцию 26.01.2010

U.P Bodunova, S.A. Konoplev, V.B. Lisin

INTERACTION OF NONLINEAR LOCALIZED WAVES IN THE BUBBLE SUSPENSION

Soliton-like waves propagation and interaction in a fluid with bubbles of the gas, which described by two wave NPSh-equation are investigated by numerical and analytical methods. It is shown, that they exist in a window of "blackness" for the linear waves and at head-on interaction they can split-up on the secondary solitary waves.

Key words: bubble suspension, two wave equation, localized wave, soliton, head-on collision, overtaking interaction.