УДК 539.4+539.37

Ю.В. Немировский, Т.П. Романова

ИССЛЕДОВАНИЕ ПОВЕДЕНИЯ ПРОИЗВОЛЬНЫХ ПЛАСТИЧЕСКИХ ПОЛИГОНАЛЬНЫХ ПЛАСТИН СО СВОБОДНЫМ ОТВЕРСТИЕМ ПРИ ИХ ДИНАМИЧЕСКОМ ДЕФОРМИРОВАНИИ

Институт теоретической и прикладной механики им. С. А. Христиановича СО РАН

В рамках модели идеального жесткопластического тела рассмотрен динамический изгиб произвольной полигональной шарнирно опертой или защемленной пластины с произвольным внутренним свободным отверстием под действием динамической нагрузки высокой интенсивности взрывного типа. Решения могут быть использованы в различных инженерных расчетах.

Ключевые слова: идеальное жесткопластическое тело, пластина, нагрузка взрывного типа, динамический изгиб, инженерные расчеты.

В рамках модели идеального жесткопластического тела и на основе общих идей, изложенных в [1], рассмотрим пластину с выпуклым *n*-угольным произвольным контуром L_1 , у которого каждая сторона L_{i1} (i = 1,...,n) шарнирно опертая или защемленная. Длина L_{i1} равна a_i , угол между $L_{i-1,1}$ и L_{i1} равен φ_i . В центральной части пластина имеет произвольное свободное отверстие L_2 (рис. 1). На пластину действует равномерно распределенная по поверхности динамическая нагрузка взрывного типа высокой интенсивности P(t), которая характеризуется мгновенным достижением максимального значения $P_{\text{max}} = P(0)$ в начальный момент времени t = 0 с последующим быстрым ее уменьшением.

Рис. 1

Рис. 2

Для такой пластины возможны две схемы деформирования в зависимости от P_{max} [1]. При нагрузках, не превышающих предельные ("низких" нагрузках, $P_{\text{max}} < P_0$), пластина остается в покое. При нагрузках, незначительно превышающих предельные ("средних" нагрузках, $P_0 < P_{\text{max}} < P_1$), схему движения пластины можно представить в виде областей S_i (i = 1, ..., n), которые жестко вращаются вокруг опорных участков L_{i1} с угловой скоростью $\dot{\alpha}_i$ (рис. 1). Области S_i разделены кусочно-линейными пластическими шарнирами. Назовем

[©] Немировский Ю.В., Романова Т.П., 2010.

схему при "средних" нагрузках схемой 1. При достаточно высоких значениях P_{max} ("высоких" нагрузках, $P_{\text{max}} > P_1$) схема 1 переходит в схему 2 (см. [1]), в которой деформирование пластины сопровождается возникновением в областях S_i (возможно, не во всех) нестационарных пластических линейных шарниров l_i , движущихся поступательно (рис. 2). В схемах 1 и 2 нормальный изгибающий момент на внутренних шарнирных линиях равен предельному моменту M_0 ; на участке L_{i1} (i=1,...,n) он равен $M_{nn} = -(1-\eta_i)M_0$, где $\eta_i = 0$ при защемлении L_{i1} и $\eta_i = 1$ при его шарнирном опирании.

Уравнения движения пластины получим из принципа виртуальной мощности с использованием принципа Даламбера [1]:

$$K = A - N, \tag{1}$$

$$K = \iint_{S} \rho \ddot{u} \dot{u}^{*} ds , \qquad A = \iint_{S} P(t) \dot{u}^{*} ds , \qquad (2)$$

$$N = \sum_{m} \int_{l_m} M_m [\dot{\theta}^*]_m dl_m.$$
⁽³⁾

Здесь *K*, *A*, *N* – мощности инерционных, внешних и внутренних сил соответственно; *S* – площадь; ρ – поверхностная плотность материала пластины; *u* – прогиб; l_m – линии разрыва угловых скоростей; M_m – изгибающий момент на l_m ; $[\dot{\theta}^*]_m$ – разрыв угловой скорости на l_m ; dl_m – элемент линии l_m . Величины с верхним индексом "*" – допустимые скорости, $() = \partial / \partial t$.

Рассмотрим подробно схему 1. Обозначим длину линейных внутренних шарниров в области S_i через d_{ij} (i = 1, ..., n, j = 1, ..., 4), а их угол наклона к участку контура L_{i1} – через ξ_{ii} (рис. 1). Тогда

$$d_{ij} = d_{i-1,k+1-j}, \qquad \xi_{ij} + \xi_{i-1,k+1-j} = \varphi_i, \qquad (i = 1, ..., n, j = 1, ..., k/2), \tag{4}$$

где k = 4 для схемы 1 (и k = 6 для схемы 2). Везде считается $(\bullet)_0 \equiv (\bullet)_n$.

В каждой области S_i введем декартовую систему координат (x_i, y_i) , в которой ось x_i проходит по стороне L_{i1} , а ось y_i направлена внутрь пластины (рис. 1). Начало координат (x_i, y_i) выбирается произвольно на участке L_{i1} . Тогда скорости прогибов пластины для схемы 1 будут представлены в виде:

$$(x_i, y_i) \in S_i: \quad \dot{u}(x_i, y_i, t) = \dot{\alpha}_i(t)y_i. \quad (i = 1, ..., n).$$
 (5)

Выражения (2), (3) принимают вид:

$$K = \rho \sum_{i=1}^{n} \ddot{\alpha}_i \dot{\alpha}_i^* \iint_{S_i} y_i^2 dy_i dx_i, \qquad A = P(t) \sum_{i=1}^{n} \dot{\alpha}_i^* \iint_{S_i} y_i dy_i dx_i, \tag{6}$$

$$N = M_0 \sum_{i=1}^{n} \dot{\alpha}_i^* \left[a_i \left(1 - \eta_i \right) + \sum_{j=1}^{4} \left(d_{ij} \cos \xi_{ij} \right) \right] = M_0 \sum_{i=1}^{n} \dot{\alpha}_i^* \left[a_i \left(2 - \eta_i \right) - b_i \right], \tag{7}$$

где $b_i(t)$ – проекция на контур L_{i1} свободной границы области S_i , которая является частью контура L_2 (рис. 1):

$$b_i(t) = a_i - \sum_{j=1}^k d_{ij}(t) \cos \xi_{ij}(t)$$
 (*i* = 1,...,*n*, *k* = 4 или 6).

Подставляя выражения (6), (7) в (1), учитывая независимость $\dot{\alpha}_i^*$, получим

$$\rho \ddot{\alpha}_i \iint_{S_i} y_i^2 dy_i dx_i = P(t) \iint_{S_i} y_i dy_i dx_i - M_0 \left[a_i \left(2 - \eta_i \right) - b_i \right]. \quad (i = 1, ..., n).$$
(8)

Условие непрерывности скоростей на границах областей S_i (i = 1, ..., n) дает

$$\dot{\alpha}_i d_{i1} \sin \xi_{i1} = \dot{\alpha}_{i-1} d_{i1} \sin \xi_{i-1,4},$$

тогда справедливо

$$\dot{\alpha}_i = \dot{\alpha}_{i-1} \sin \xi_{i-1,4} / \sin \xi_{i1}.$$
 (*i*=1,...,*n*-1). (9)

Начальные условия для $\dot{\alpha}_i$, α_i имеют вид

$$\dot{\alpha}_i(0) = \alpha_i(0) = 0.$$
 (*i*=1,...,*n*). (10)

Величины d_{ij} , ξ_{ij} (i = 1, ..., n, j = 1, ..., 4) в общем случае являются функциями времени. Система (8), (9), (4) с начальными условиями (10) и $d_{ij}(0) = d_{ij}^0$, $\xi_{ij}(0) = \xi_{ij}^0$ описывает поведение пластины при деформировании по схеме 1. Начальные значения d_{ij}^0 , ξ_{ij}^0 определяются в зависимости от величины P_{max} , как это будет показано ниже.

Предельную нагрузку P_0 определим из (8) при $\ddot{\alpha}_i = 0$ (i = 1, ..., n). Тогда получим

$$P = M_0 \left[a_i \left(2 - \eta_i \right) - b_i \right] / \iint_{S_i} y_i dy_i dx_i . \qquad (i = 1, ..., n).$$
(11)

Из (11) имеем следующие n-1 равенств:

$$\frac{a_i(2-\eta_i)-b_i}{\iint\limits_{S_i} y_i dy_i dx_i} = \frac{a_{i+1}(2-\eta_{i+1})-b_{i+1}}{\iint\limits_{S_{i+1}} y_{i+1} dy_{i+1} dx_{i+1}} . \qquad (i=1,...,n-1) .$$
(12)

Из (4), (12) можно все функции d_{ii} , ξ_{ii} выразить через одну, например, ξ_{11} :

$$d_{ij} = F_{ij}(\xi_{11}), \qquad \xi_{ij} = G_{ij}(\xi_{11}). \qquad (i = 1, ..., n, j = 1, ..., 4).$$
(13)

Тогда из (11) следует, что предельная нагрузка P₀ равна

$$P_0 = M_0 \min_{\xi_{11}} \left[a_1 (2 - \eta_1) - b_1 \right] / \iint_{S_1} y_1 dy_1 dx_1,$$
(14)

где величины d_{1j} , ξ_{1j} , определяющие область S_1 , выражены через ξ_{11} . Значение функций d_{ij} , ξ_{ij} (i = 1, ..., n, j = 1, ..., 4) при действии предельной нагрузки P_0 обозначим через d_{ij}^p , ξ_{ij}^p . Тогда величина ξ_{11}^p определяется как значение ξ_{11} , на котором реализуется минимум в выражении (14), а остальные d_{ij}^p , ξ_{ij}^p определяются по ξ_{11}^p из соотношений (13).

Начальные значения d_{ij}^0 , ξ_{ij}^0 (*i* = 1,...,*n*, *j* = 1,...,4) для схемы 1 определяются по P_{max} из (4) и системы (11) при *t* = 0, которая примет вид (где S_i^0 – это S_i при *t* = 0):

$$P_{\max} = M_0 \left[a_i \left(2 - \eta_i \right) - b_i \right] / \iint_{S_i^0} y_i dy_i dx_i. \qquad (i = 1, ..., n).$$

Рассмотрим схему 2 (рис. 2). Обозначим часть области S_i между отрезками L_{i1} и l_i через Z_{i1} , а оставшуюся часть – через Z_{i2} (i = 1, ..., n). Поскольку шарнир l_i движется поступательно, то все его точки движутся с одинаковой скоростью, которую обозначим через $\dot{w}_i(t)$. Из непрерывности скоростей на l_i следует, что $l_i || L_{i1}$, и расстояние D_i между L_{i1} и l_i не зависит от координат (x_i, y_i), а является только функцией времени. Обозначим скорость поворота области Z_{i2} вокруг шарнира l_i через $\dot{\beta}_i$. Тогда скорости прогибов пластины для схемы 2 будут представлены в виде:

$$(x_{i}, y_{i}) \in Z_{i1}: \qquad \dot{u}(x_{i}, y_{i}, t) = \dot{\alpha}_{i}(t)y_{i}, \qquad (i = 1, ..., n).$$

$$(x_{i}, y_{i}) \in Z_{i2}: \qquad \dot{u}(x_{i}, y_{i}, t) = \dot{w}_{i}(t) + \dot{\beta}_{i}(t)(y_{i} - D_{i}).$$
(15)

Уравнения движения пластины для схемы 2 получим из (1). Если шарниры l_i возникли во всех областях S_i , то выражения (2) имеют вид:

$$K = \rho \sum_{i=1}^{n} \{ \ddot{\alpha}_{i} \dot{\alpha}_{i}^{*} \iint_{Z_{i1}} y_{i}^{2} dy_{i} dx_{i} + \iint_{Z_{i2}} [\ddot{\beta}_{i} (y_{i} - D_{i}) + \ddot{w}_{i}] [\dot{\beta}_{i}^{*} (y_{i} - D_{i}) + \dot{w}_{i}^{*}] dy_{i} dx_{i} \} = (16)$$

$$= \rho \sum_{i=1}^{n} \{ \ddot{\alpha}_{i} \dot{\alpha}_{i}^{*} \iint_{Z_{i1}} y_{i}^{2} dy_{i} dx_{i} + \dot{\beta}_{i}^{*} [\ddot{\beta}_{i} \iint_{Z_{i2}} (y_{i} - D_{i})^{2} dy_{i} dx_{i} + \ddot{w}_{i} \iint_{Z_{i1}} (y_{i} - D_{i}) dy_{i} dx_{i}] + \dot{w}_{i}^{*} [\ddot{\beta}_{i} \iint_{Z_{i2}} (y_{i} - D_{i}) dy_{i} dx_{i} + \ddot{w}_{i} \iint_{Z_{i2}} dy_{i} dx_{i}] \},$$

$$A = P(t) \sum_{i=1}^{n} [\dot{\alpha}_{i}^{*} \iint_{Z_{i1}} y_{i} dy_{i} dx_{i} + \dot{w}_{i}^{*} \iint_{Z_{i2}} dy_{i} dx_{i} + \dot{\beta}_{i}^{*} \iint_{Z_{i2}} (y_{i} - D_{i}) dy_{i} dx_{i}]. \qquad (17)$$

Учитывая что $[\dot{\theta}^*]_{l_i} = |\dot{\alpha}_i^* - \dot{\beta}_i^*|$, а $\dot{\alpha}_i^* \ge \dot{\beta}_i^*$ (i = 1, ..., n) (как и в [1, 2]), получим, что полная мощность внутренних сил (3) имеет выражение

$$N = M_0 \sum_{i=1}^{n} \left[\dot{\alpha}_i^* (2 - \eta_i) a_i - \dot{\beta}_i^* b_i \right].$$
(18)

Подставляя выражения (16) – (18) в равенство (1) и учитывая независимость функций $\dot{\alpha}_i^*$, $\dot{\beta}_i^*$, \dot{w}_i^* , получим следующие уравнения: (*i* = 1,...,*n*)

$$\rho \ddot{\alpha}_{i} \iint_{Z_{i1}} y_{i}^{2} dy_{i} dx_{i} = P(t) \iint_{Z_{i1}} y_{i} dy_{i} dx_{i} - M_{0}(2 - \eta_{i}) a_{i}, \qquad (19)$$

$$\rho \ddot{\beta}_{i} \iint_{Z_{i2}} (y_{i} - D_{i})^{2} dy_{i} dx_{i} + \rho \ddot{w}_{i} \iint_{Z_{i2}} (y_{i} - D_{i}) dy_{i} dx_{i} =$$
(20)

$$= P(t) \iint_{Z_{i2}} (y_i - D_i) dy_i dx_i + M_0 b_i,$$

$$\rho \ddot{\beta}_i \iint_{Z_{i2}} (y_i - D_i) dy_i dx_i + \rho \ddot{w}_i \iint_{Z_{i2}} dy_i dx_i = P(t) \iint_{Z_{i2}} dy_i dx_i.$$
(21)

После преобразований уравнения (20), (21) приводятся к виду: (i = 1, ..., n)

$$\rho\ddot{\beta}_{i} = M_{0}b_{i} \iint_{Z_{i2}} dy_{i}dx_{i} / Q_{i}, \quad (Q_{i} = \iint_{Z_{i2}} dy_{i}dx_{i} \iint_{Z_{i2}} y_{i}^{2}dy_{i}dx_{i} - (\iint_{Z_{i2}} y_{i}dy_{i}dx_{i})^{2} > 0)$$
(22)

$$\rho \ddot{w}_i = P(t) - M_0 b_i \iint_{Z_{i2}} (y_i - D_i) dy_i dx_i / Q_i.$$
⁽²³⁾

Из непрерывности скоростей на границах областей Z_{i1} и Z_{i2} , Z_{i2} и $Z_{i-1,2}$ имеем

$$\dot{\alpha}_i D_i = \dot{w}_i, \qquad (i = 1, ..., n)$$
 (24)

$$\dot{\beta}_i = \dot{\beta}_{i-1} \psi_i, \qquad \dot{\alpha}_i = \dot{\alpha}_{i-1} \omega_i,$$
(25)

где функции ψ_i , ω_i зависят от геометрических размеров областей Z_{i1} , Z_{i2} .

Система уравнений (19), (22) – (25), (4) описывает поведение пластины в случае деформирования по схеме 2. Начальные условия имеют вид (10) и

$$\dot{\beta}_i(0) = \beta_i(0) = \dot{w}_i(0) = w_i(0) = 0$$
 (*i* = 1,...,*n*).

Нагрузка P_1 , при превышении которой реализуется схема 2, и начальные значения $D_0 = D(0)$, d_{ij}^0 , ξ_{ij}^0 (i = 1, ..., n, j = 1, ..., 4) при $P_{\text{max}} > P_1$, определяются далее.

Возможно, что при $P_{\text{max}} \ge P_1$ шарнир l_i возникает не во всех областях S_i . В тех областях S_j , где шарнира l_j нет, движение описывается уравнениями схемы 1: (8), (9), (4) при соответствующих значениях i = j. В остальных областях поведение описывается уравнениями схемы 2: (19), (22) – (25), (4). Из условия непрерывности скоростей на границе областей S_i , движущихся по схеме 1, и областей S_k , деформирующихся по схеме 2, получим:

$$\dot{\alpha}_k = \dot{\alpha}_j \delta_k, \qquad \dot{\beta}_k = \dot{\alpha}_j \kappa_k,$$

где δ_k , κ_k – функции от геометрических размеров областей S_i и S_k .

При отсутствии отверстия ($b_i = 0$, i = 1,...,n) области Z_{i2} сливаются в одну область и, как видно из (23), движутся поступательно с одинаковой скоростью $\dot{w}_i = P(t) / \rho$.

Рассмотрим определение нагрузки P_1 . Пусть пластина в силу симметрии имеет в схеме 2 три типа областей, например, как на рис. 3, где $\varphi_i = \varphi = \text{const}$ (при $\varphi = \pi/2$ пластина будет прямоугольной). В схеме 2 на рис. 3 шарнир l_1 возник в области S_1 и разбил ее на две области Z_{11} и Z_{12} , а в области S_2 такого шарнира нет. Пусть P_{11} – нагрузка, при превышении которой пластина начнет деформироваться таким образом. Поведение определяется уравнениями (8) при i = 2 и (19), (22) – (24) при i = 1 и

$$\dot{\alpha}_1 = \dot{\alpha}_2 \sin(\varphi - \xi_{11}) / \sin \xi_{11},$$
 (26)

$$\hat{\beta}_1 = \dot{\alpha}_2 \sin(\varphi - \xi_{12}) / \sin \xi_{12},$$
(27)

$$\xi_{1\,j} + \xi_{2\,j} = \varphi, \quad (j = 1, 2), \tag{28}$$

где $\dot{\alpha}_1$, $\dot{\alpha}_2$, $\dot{\beta}_1$, \dot{w}_1 , D_1 , ξ_{ii} (*i*, *j* = 1, 2) – девять неизвестных функций времени.

Рис. 3

Дифференцируя (24) при i = 1 по времени, имеем выражение $\ddot{\alpha}_1 D_1 + \dot{\alpha}_1 \dot{D}_1 = \ddot{w}_1$,

которое подставляем в (23), (19) при i = 1. При t = 0 из полученного равенства следует

$$\frac{P_{\max}}{M_0} = \frac{(2 - \eta_1)a_1D_1^0 - b_1 \iint\limits_{Z_{11}^0} y_1^2 dy_1 dx_1 \iint\limits_{Z_{12}^0} (y_1 - D_1^0) dy_1 dx_1 / Q_1^0}{D_1^0 \iint\limits_{Z_{11}^0} y_1 dy_1 dx_1 - \iint\limits_{Z_{11}^0} y_1^2 dy_1 dx_1},$$
(29)

где верхним индексом 0 обозначены области и функции при *t* = 0. Дифференцируя (26) по времени, имеем равенство

 $\ddot{\alpha}_1 = \ddot{\alpha}_2 \sin(\varphi - \xi_{11}) / \sin \xi_{11} - \dot{\alpha}_2 \dot{\xi}_{11} \sin \varphi / \sin^2 \xi_{11},$

которое подставляем в (19) при i=1 и (8) при i=2. При t=0 из полученного выражения следует

$$\frac{P_{\max}}{M_0} = \frac{(2-\eta_1)a_1 \iint\limits_{S_2^0} y_2^2 dy_2 dx_2 - [a_2(2-\eta_2)-b_2] \frac{\sin(\varphi-\xi_{11}^0)}{\sin\xi_{11}^0} \iint\limits_{Z_{11}^0} y_1^2 dy_1 dx_1}{\iint\limits_{Z_{11}^0} y_1 dy_1 dx_1 \iint\limits_{S_2^0} y_2^2 dy_2 dx_2 - \frac{\sin(\varphi-\xi_{11}^0)}{\sin\xi_{11}^0} \iint\limits_{S_2^0} y_2 dy_2 dx_2 \iint\limits_{Z_{11}^0} y_1^2 dy_1 dx_1} .$$
 (30)

Дифференцируя (27) по времени, имеем выражение,

$$\ddot{\beta}_1 = \ddot{\alpha}_2 \sin(\varphi - \xi_{12}) / \sin \xi_{12} - \dot{\alpha}_2 \dot{\xi}_{12} \sin \varphi / \sin^2 \xi_{12},$$
(22) = $\sin \varphi = 1 + (\varphi) = \sin \varphi$

которое подставляем в (22) при i = 1 и (8) при i = 2. При t = 0 из полученного соотношения следует

$$\frac{P_{\max}}{M_0} = \frac{a_2(2-\eta_2) - b_2 + b_1 \sin \xi_{12}^0 \iint\limits_{Z_{12}^0} \frac{dy_1 dx_1 \iint\limits_{S_2^0} y_2^2 dy_2 dx_2 / \left[\sin (\varphi - \xi_{12}^0) Q_1^0\right]}{\iint\limits_{S_2^0} y_2 dy_2 dx_2}.$$
 (31)

Поскольку при $P_{\text{max}} = P_{11}$ схема 1 переходит в схему 2, то при этом должно выполняться условие $\dot{\alpha}_1 = \dot{\beta}_1$. Тогда из этого равенства и (19), (22) при i = 1 получим

$$\frac{P_{11}}{M_0} \iint_{Z_{11}^b} y_1 dy_1 dx = (2 - \eta_1) a_1 + b_1 \iint_{Z_{11}^b} y_1^2 dy_1 dx_1 \iint_{Z_{12}^b} dy_1 dx_1 / Q_1^b,$$
(32)

где верхний индекс *b* обозначает, что области и функции определены при $D_1 = D_1^b$, $\xi_{ij} = \xi_{ij}^b$ (*i*, *j* = 1, 2), которые являются значениями D_1 и ξ_{ij} при нагрузке $P_{\text{max}} = P_{11}$.

Из системы уравнений (29) – (31) при $P_{\text{max}} = P_{11}$ и (32), (28) определяются значения P_{11} , D_1^b , ξ_{ij}^b (*i*, *j* = 1, 2). А из системы (28) – (31) по величине P_{max} определяются начальные значения D_1^0 , ξ_{ij}^0 .

Поскольку заранее неизвестно, в какой из областей S_1 или S_2 возникнет пластический шарнир l_1 или l_2 , соответственно, то следует также рассмотреть случай, когда сначала в области S_2 возникает пластический шарнир l_2 , а в области S_1 его нет. Нагрузку P_{max} , соответствующую появлению шарнира l_2 в области S_2 , обозначим через P_{12} . Величина P_{12} определяется аналогично вычислению значения P_{11} . Тогда

$$P_1 = \min(P_{11}, P_{12})$$
.

При нагрузке $P_{\text{max}} > P_1$ возможно возникновение пластического шарнира l_1 (или l_2) и в той области S_1 (или S_2), в которой его не было при $P_{\text{max}} = P_1$ (рис. 4). Поведение пластины в этом случае описывается уравнениями (19), (22) – (24) при i = 1, 2, (26), (27), (28) при j = 1-3 и

$$\dot{\beta}_1 = \dot{\beta}_2 \sin(\phi - \xi_{13}) / \sin \xi_{13}$$
,

где углы ξ_{13} , ξ_{23} изображены на рис. 4. Нагрузка P_2 , соответствующая началу развития схемы 2 с шарнирами l_1 и l_2 , изображенной на рис. 4, вычисляется аналогично нагрузке P_{11} , учитывая, что при этом выполняется $\dot{\alpha}_2 = \dot{\beta}_2$.

Уравнения, описывающие динамическое поведение пластины, решаются численно методом Рунге-Кутта. Для одинаково закрепленного правильного полигонального контура такой анализ подробно рассмотрен в [2].

Работа выполнена при финансовой поддержке Президиума СО РАН (Постановление № 10 от 15.01.09, номер проекта 15).

Библиографический список

- 1. **Немировский, Ю.В.** Моделирование динамического поведения жесткопластической криволинейной пластины с произвольным свободным отверстием / Ю.В. Немировский, Т.П. Романова // Теоретическая и прикладная механика: Международный научно-технический сборник, Белорусский Национальный тех. ун-т. 2007. № 23. С. 26–34.
- Немировский, Ю.В. Динамика жесткопластической правильной полигональной пластины с отверстием под действием взрывных нагрузок / Ю.В. Немировский, Т.П. Романова // Краевые задачи и математическое моделирование: сб. ст. 9-й Всероссийской науч. конф. – Новокузнецк. 2008. В 3 т. Т. 1. С. 93–97.

Дата поступления в редакцию 09.11.2010

Y.V. Nemirovsky, T.P. Romanova

PHYSICAL MODELING OF VESSEL MOTION IN BROKEN ICE

In the framework of ideal rigid-body discussed dynamic bending of the plate. Consider a plate with an arbitrary inner hole that is under the influence of dynamic loading of high-intensity explosive type. Solutions can be used in a variety of engineering calculations.

Key words: ideal rigid body, plate, load of explosive type, dynamic bending, engineering calculations.