УДК 681.3.513

Е.А. Никулин

КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ ОПТИЧЕСКИХ ЭФФЕКТОВ

Нижегородский государственный технический университет им. Р.Е. Алексеева

Модернизированы формулы, методы и алгоритмы построения высокореалистичных изображений сцен как с простыми, так и сложными оптическими эффектами: глобальным освещением, полутенями, многократными отражениями и преломлениями. Направления лучей в пересекающихся объектах определяются с помощью приоритетного стека трассировки.

Ключевые слова: освещение, тень, отражение, преломление, трассировка лучей, стек, приоритет.

Создание фотореалистичных изображений сложных сцен, включающих множество объектов и источников освещения с разнообразными оптическими свойствами, невозможно без изучения физических процессов взаимодействия света с материалами и средами распространения, а также без разработки и использования адекватных этим процессам моделей и алгоритмов.

Целью компьютерного моделирования оптических процессов является получение изображения, в котором цвет каждого пиксела рассчитан с учетом суммарной световой энергии, пришедшей в соответствующий светочувствительный рецептор наблюдателя.

Наибольшими возможностями моделирования распространения света обладает метод трассировки лучей (МТЛ). В его *обратном* варианте от наблюдателя проводятся первичные лучи $\mathbf{p}_{ij} + \mathbf{V}_{ij}t$, приведенные к центрам каждого из $n \times m$ рецепторов виртуальной проективной плоскости \mathbf{p}_{ij} (рис. 1). В зависимости от удаленности наблюдателя от сцены выбираются формулы расчета вектора направления луча \mathbf{V}_{ij} и проекции сцены:

• в сцене с *дальним* наблюдателем, удаленным в бесконечность по *вектору* **S**, все лучи с параметром $t \in (-\infty, \infty)$ идут в одном и том же направлении $\mathbf{V}_{ij} = -\mathbf{S}$, образуя параллельную проекцию сцены. Лучи, проходящие через угловые рецепторы проективной плоскости, ограничивают призму видимости с двумя бесконечно удаленными основаниями;

• в сцене с ближним наблюдателем все лучи выходят из точки **S** и идут в разных направлениях $\mathbf{V}_{ij} = \mathbf{p}_{ij} - \mathbf{S}$ с параметром $t \in (-1, \infty)$, создавая перспективную проекцию. Угловые лучи ограничивают пирамиду видимости с вершиной **S** и бесконечно удаленным основанием.

а – дальний наблюдатель; *б* – ближний наблюдатель

Рассмотрим задачи, решаемые компьютерной трассировкой световых лучей на основе трех законов геометрической оптики [1] (четвертый закон обратимости хода луча положен в

[©] Никулин Е.А., 2011.

основу выбора направления трассировки – обратного ходу реальных лучей), а также их способность моделировать *простые* оптические эффекты.

1. Распространение луча в однородной среде по принципу Ферма происходит *прямо*линейно. Отсюда возникает *первая* и главная в МТЛ комплексная задача: нахождение точек пересечения лучей с объектами сцены. В этот комплекс входят:

- расчет параметров и точек пересечения *неограниченной* прямой с *неограниченными* поверхностями объектов сцены;
- тест принадлежности одного из параметров t интервалу определения луча Ω_t ;
- тест принадлежности найденных точек *ограниченным* областям поверхностей П;
- выбор из множества точек пересечений луча с разными поверхностями ближайшей к его началу точки **q** с минимальным значением параметра *t*;
- расчет вектора нормали N в точке q ближайшей поверхности.

Пересечение луча $\mathbf{l}(t) = \mathbf{p} + \mathbf{V}t$, $t \in \Omega_t$, с поверхностью, описываемой неявной моделью $f(\mathbf{q}) = 0$, находится решением уравнения $f(\mathbf{p} + \mathbf{V}t) = 0$ относительно параметра t, проверкой условия $t \in \Omega_t$ и получением искомой точки $\mathbf{q} = \mathbf{l}(t)$. Как показано на рис. 2, a, одни лучи (1) могут проходить мимо поверхности (тогда уравнение не имеет действительного решения), другие (2) удаляются от нее (уравнение имеет недопустимое решение $t \notin \Omega_t$). Если же решение допустимо, но не единственно, то луч (3) пересекает поверхность в нескольких точках, из которых берется ближайшая к началу луча с минимальным параметром t. Пересечение лучом (4) поверхности вне области П обнаруживается специальными пространственными тестами принадлежности $\mathbf{q} \in \Pi$.

В частном случае бесконечная плоскость, заданная точкой о и вектором нормали N (рис. 2, δ), описывается неявной функцией $f(\mathbf{q}) = (\mathbf{q} - \mathbf{o}) \circ \mathbf{N}$. При условии $\mathbf{V} \circ \mathbf{N} \neq 0$ непараллельности плоскости и прямой существуют параметр и точка их пересечения:

$$t = \frac{(\mathbf{o} - \mathbf{p}) \circ \mathbf{N}}{\mathbf{V} \circ \mathbf{N}} \implies \mathbf{q} = \mathbf{p} + \frac{(\mathbf{o} - \mathbf{p}) \circ \mathbf{N}}{\mathbf{V} \circ \mathbf{N}} \mathbf{V}.$$
(1)

Принадлежность точки **q** ограниченному участку плоскости П, например, полигональной грани полиэдра, определяется тестами ориентации, рассмотренными в [2].

Пересечение прямой $\mathbf{l}(t)$ с параметрической поверхностью $\mathbf{q}(\tau, \theta)$ находится решением векторного уравнения $\mathbf{p} + \mathbf{V}t = \mathbf{q}(\tau, \theta)$ относительно параметров t, τ и θ , проверкой их попадания в допустимые области Ω_t , $\Omega_{\tau\theta}$ и расчетом точки $\mathbf{q} = \mathbf{l}(t)$ с минимальным значением t. В частности, бесконечная плоскость, заданная точкой \mathbf{o} и направляющими векторами \mathbf{U} и \mathbf{W} (рис. 2, δ), описывается параметрической функцией $\mathbf{q}(\tau, \theta) = \mathbf{o} + \mathbf{U}\tau + \mathbf{W}\theta$ с неограниченными параметрами τ и θ . При непараллельности плоскости и прямой (невырожденности матрицы, составленной из векторов \mathbf{V} , \mathbf{U} и \mathbf{W}) существуют параметры и точка пересечения:

Рис. 2. Пересечение луча с поверхностью

Знание параметров τ и θ позволяет заменить сложный пространственный тест $\mathbf{q} \in \Pi$ простой проверкой $\{\tau, \theta\} \in \Omega_{\tau\theta}$. К примеру, треугольник $\mathbf{q}_1\mathbf{q}_2\mathbf{q}_3$ и параллелограмм $\mathbf{q}_1\mathbf{q}_2\mathbf{q}_3\mathbf{q}_4$ (из этих плоских фигур можно составить большинство полигональных граней 3d-объектов) задаются точкой $\mathbf{o} = \mathbf{q}_1$ и векторами $\mathbf{U} = \mathbf{q}_2 - \mathbf{q}_1$ и $\mathbf{W} = \mathbf{q}_3 - \mathbf{q}_2$, а область допустимых параметров определяется следующими неравенствами:

- у треугольника $0 \le \theta \le \tau \le 1$ (рис. 2, *в*);
- у параллелограмма $0 \le \tau \le 1$ и $0 \le \theta \le 1$ (рис. 2, *г*).

Вектор нормали неявной поверхности $f(\mathbf{q}) = 0$ есть вектор градиента $\mathbf{N}(\mathbf{q}) = df(\mathbf{q})/d\mathbf{q}$, а нормаль параметрической поверхности в точке $\mathbf{q}(\tau,\theta)$ находится как векторное произведение $\mathbf{N}(\tau,\theta) = \mathbf{U}(\tau,\theta) \times \mathbf{W}(\tau,\theta)$ направляющих векторов $\mathbf{U}(\tau,\theta) = \partial \mathbf{q}/\partial \tau$ и $\mathbf{W}(\tau,\theta) = \partial \mathbf{q}/\partial \theta$.

На расчете пересечений основаны алгоритмы геометрической *визуализации* – нахождения и вывода на экран только видимых элементов объектов сцены – и построения простого оптического эффекта – *тени* одного объекта на другой. В алгоритме визуализации в экранный пиксел \mathbf{p}_{ij} выводится суммарная освещенность ближайшей видимой точки \mathbf{q}_{ij} всеми источниками света с учетом ее собственного цвета (см. рис. 1).

В алгоритме тенеобразования из найденной точки \mathbf{q}_{ij} выпускается теневой зонд $\mathbf{q}_{ij} + \mathbf{T}_{ij}t$. В случае ближенего расположения источника света в точке **L** вектор направления луча берется равным $\mathbf{T}_{ij} = \mathbf{L} - \mathbf{q}_{ij}$, а параметр луча – в отрезке $t \in [0, 1]$. К дальнему источнику, удаленному в бесконечность по вектору **L**, все зондирующие лучи идут в одном направлении $\mathbf{T}_{ij} = \mathbf{L}$, а параметр определен в интервале $t \in [0, \infty)$. В отсутствие пересечения зонда с объектами сцены к освещенности точки \mathbf{q}_{ij} добавляется цвет источника **I**. В противном случае в этой точке будет пониженная освещенность, присущая области тени.

Работу рассмотренных алгоритмов иллюстрируют изображения, построенные на рис. 3: визуализация системы непересекающихся (a, b) и пересекающихся (b, c) тел, а также построение всех физически возможных простых теней в сценах (b, c) с одним источником света.

Рис. 3. Оптические эффекты визуализации и простой тени

В сцене с несколькими точечными источниками света возможно появление сложной тени (рис. 4, a): в точках типа \mathbf{q}_1 , экранированных от всех источников, возникает полная тень, окрашенная лишь фоновым освещением. В частично экранированных точках типа \mathbf{q}_2 появляется полутень. Этот оптический эффект иллюстрирует рис. 4, δ . Пространственно протяженный линейный либо площадный источник аппроксимируется системой точечных источников и создает размытые границы теней (рис. 4, ϵ).

Рис. 4. Оптический эффект сложной тени

Вторая задача состоит в обнаружении прохождения луча через точку **L**, где расположен источник света интенсивности **I**, и прекращении его дальнейшей трассировки с выводом на экран изображения источника. Основные затруднения:

- ни один из приведенных лучей не проходит точно через бесконечно малую точку;
- даже если «притянуть» точечную проекцию источника к центру ближайшего рецептора, то изображение размером в один пиксел будет с трудом различимо в окне вывода;
- выводу на экран подлежит источник, не заслоненный никакими объектами;
- близкие к наблюдателю источники должны выглядеть крупнее, чем дальние.

Для разрешения этих проблем заменим точечный источник сферой радиуса ρ , вычислим по [2] расстояние от точки **L** до луча и параметр ее проекции на вектор **V** (рис. 5): $d = |(\mathbf{L} - \mathbf{p}) \times \overline{\mathbf{V}}|, \quad t_{\mathbf{L}} = \frac{(\mathbf{L} - \mathbf{p}) \circ \mathbf{V}}{\mathbf{V} - \mathbf{V}}.$

$$S = V \{L, I\} = q = 0$$

Рис. 5. Прохождение луча через источник

Если луч $\mathbf{p} + \mathbf{V}t$ пересекает какие-нибудь объекты сцены, то в (1) или (2) уже найден параметр $t_{\mathbf{q}} \in \Omega_t$ самой близкой точки пересечения \mathbf{q} (в отсутствие пересечений $t_{\mathbf{q}} = \infty$). При выполнении условий прохождения луча в ρ -окрестности *видимой* и *ближайшей* точки **L**:

$$(d \le \rho) \land (t_{\mathbf{L}} \in \Omega_t) \land (t_{\mathbf{L}} \le t_{\mathbf{q}})$$
(3)

пиксел **р** окрашивается в цвет источника **I**. Множество таких пикселов составляет на экране круглое либо эллиптическое пятно, *условно* изображающее точечный источник света. Примером служит сцена на рис. 4, *б*, в которой есть как приближенный, так и удаленный от наблюдателя точечные источники.

Третья задача, связанная с распространением света в однородной среде, изучает уменьшение интенсивности луча по закону Бугера [1] в экспоненциальной зависимости

Рис. 6. Затухание света

 $\delta(d) = \exp(-\lambda d) \le 1 \tag{4}$

от пройденного им расстояния *d* и показателя затухания $\lambda \ge 0$. Благодаря этому эффекту, в изображении сцены появляется воздушная перспектива – ослабление цветовой окраски далеких объектов. Это хорошо заметно при сравнении рис. 3, *г* и рис. 6, построенном обратным МТЛ с показателем затухания внешней среды $\lambda = 1 / 100r_c$, где r_c – радиус верхней сферы.

С помощью умножения вектора падающего луча V в момент пересечения с поверхностью на коэффициент затухания $\delta(d) < 1$, можно своевременно остановить его трассировку при уменьшении длины вектора |V| в заданное число раз.

2. В точке **q** пересечения падающего луча **p** + V*t* с гладкой поверхностью возникает *отраженный* луч **q** + M*t* (рис. 7, *a*). Вектор его направления **M** имеет длину $|\mathbf{M}| = |\mathbf{V}|$ и слагается из тангенциальной $\mathbf{V}_{\parallel} = \mathbf{V} - v\overline{\mathbf{N}}$ и инверсии нормальной $\mathbf{V}_{\perp} = v\overline{\mathbf{N}}$ составляющих вектора падающего луча **V**, где $v = \mathbf{V} \circ \overline{\mathbf{N}}$:

$$\mathbf{M} = \mathbf{V} - 2\nu \overline{\mathbf{N}} \,. \tag{5}$$

Этот вектор образует с нормалью N угол отражения $\beta = \angle (M, N)$, равный углу падения $\alpha = \angle (V, -N)$. Далее производится трассировка отраженного луча до пересечения с ближай-

шим объектом сцены. В результате на гладких поверхностях в точках типа \mathbf{q}_1 видны отражения других объектов (рис. 7, δ). В точках типа \mathbf{q}_2 , из которых отраженные лучи идут в точки L расположения источников, видны световые блики цвета I, окруженные радиально затухающим ореолом диффузно отраженных лучей источника. Остальные вторичные лучи покидают пространство сцены, добавляя в рецептор **р** фоновую освещенность.

Рис. 7. Отражение луча

На рис. 8 смоделированы простые (*однократные*) отражения световых лучей от зеркальных поверхностей. В сценах (a, b) построены все видимые отражения объектов друг в друге, а в сцены (δ , c) добавлено по два точечных источника света, отражения которых видны в точках, принадлежащих ограниченным областям отражающих поверхностей.

Рис. 8. Сцены с простыми отражениями

Если продолжить трассировку второго, третьего и последующих отраженных лучей, накапливая освещенности в точках пересечений, то в корне дерева трассировки (i, j)-го рецептора соберется суммарный цвет точек отражения всех объектов, принесших в него световую энергию по всем ветвям отраженных лучей. Так моделируется оптический эффект *сложного* отражения. На рис. 9, *а* показан ход лучей, ограничивающих первое (I) и второе (2) отражения зеркальной сферы в зеркальной плоскости. Изображения двух сцен (рис. 8, *б*, *в*) рассчитанных максимум до четвертых отражений, показаны на рис. 9, *б*, *в*.

Рис. 9. Оптический эффект сложного отражения

3. При пересечении лучом $\mathbf{p} + \mathbf{V}t$ в точке \mathbf{q} границы раздела прозрачных сред с показателями преломления n_1 и n_2 возникает *преломленный* луч $\mathbf{q} + \mathbf{R}t$ (рис. 10). Вектор его направления \mathbf{R} образует с нормалью \mathbf{N} угол преломления $\gamma < 90^\circ$, связанный с углом падения $\alpha < 90^\circ$ законом Снеллиуса - Декарта $n_1 \sin(\alpha) = n_2 \sin(\gamma)$ [1]. Следует отметить, что в наиболее популярных учебниках по компьютерной графике [3, 4 и др.] формулы расчета вектора \mathbf{R} различны. Более того, они не являются универсальными. Для достижения результата их авторы предъявляют к исходным данным специальные требования:

- векторы V и R нормированы;
- нормаль N направлена навстречу падающему лучу;
- иногда и вектор V должен выходить из точки **q**, что совсем противоречит здравому смыслу!

Все эти ограничения вынуждают перед каждым расчетом преломления делать дополнительные проверки и коррекции векторов, втискивающие общую задачу в прокрустово ложе частного случая. Без этих предвычислений направление преломленного луча может оказаться неверным, например, при сонаправленности векторов V и N либо при $n_1 > n_2$.

Рис. 10. Преломление луча

Обозначив относительный показатель преломления $n_{\rm n} = n_1/n_2$, выведем универсальную формулу преломления, исходя из закона Снеллиуса-Декарта и естественного условия равенства длин векторов $|\mathbf{V}| = |\mathbf{R}|$, позволяющего эффективно моделировать затухание луча от пройденного им расстояния по закону Бугера (4). Найдем нормальную и тангенциальную составляющие вектора \mathbf{R} , используя число $v = \mathbf{V} \circ \overline{\mathbf{N}}$, его модуль $|v| = |\mathbf{V}| \cos(\alpha)$, ранее полученные зависимости $\mathbf{V}_{\perp} = v \overline{\mathbf{N}}$, $\mathbf{V}_{||} = \mathbf{V} - v \overline{\mathbf{N}}$ и соотношение синусов углов $\sin(\gamma) = n_{\rm n} \sin(\alpha)$:

$$\mathbf{R}_{\perp} = \frac{\cos(\gamma)}{\cos(\alpha)} \mathbf{V}_{\perp} = \frac{\sqrt{1 - n_{\pi}^2 (1 - \cos^2(\alpha))}}{\cos(\alpha)} v \overline{\mathbf{N}} = \sqrt{n_{\pi}^2 + (1 - n_{\pi}^2) |\mathbf{V}/v|^2} v \overline{\mathbf{N}}, \quad \mathbf{R}_{\parallel} = \frac{\sin(\gamma)}{\sin(\alpha)} \mathbf{V}_{\parallel} = n_{\pi} (\mathbf{V} - v \overline{\mathbf{N}}).$$

Суммируя составляющие, получаем вектор направления преломленного луча и условие его существования, вытекающее из положительности дискриминанта $1-n_{\pi}^2 \sin^2(\alpha) > 0$:

$$\mathbf{R} = n_{\Pi} \mathbf{V} + \left(\sqrt{n_{\Pi}^2 + (1 - n_{\Pi}^2) |\mathbf{V}/v|^2} - n_{\Pi} \right) v \overline{\mathbf{N}}, \quad n_{\Pi} |\overline{\mathbf{V}} \times \overline{\mathbf{N}}| < 1.$$
(6)

Нарушение последнего неравенства дает эффект полного внутреннего отражения. Полученное решение автоматически верно́ при любом из двух возможных направлений нормали относительно падающего луча – как встречного, так и попутного. Это позволяет одинаково моделировать как одинарное, так и двойное преломления лучей, падающих на разные стороны одной и той же поверхности с односторонне ориентированными нормалями (рис. 11). Направление второго преломленного луча рассчитывается по (6) следующим образом

$$\mathbf{R}_{2} = n_{\Pi}^{-1} \mathbf{R}_{1} + \left(\sqrt{n_{\Pi}^{-2} + (1 - n_{\Pi}^{-2}) |\mathbf{R}_{1}/\rho|^{2}} - n_{\Pi}^{-1} \right) \rho \overline{\mathbf{N}}_{2} \quad \Pi \rho = \mathbf{R}_{1} \circ \overline{\mathbf{N}}_{2}, \quad n_{\Pi}^{-1} |\overline{\mathbf{R}}_{1} \times \overline{\mathbf{N}}_{2}| < 1.$$

Рис. 11. Одинарное и двойное лучепреломление

Отнесем одинарное и двойное преломление лучей в *непересекающихся* прозрачных объектах к категории *простых* преломлений, в которых луч от входа до выхода распространяется в одной и той же среде. Для автоматизации учета пересечений лучом границы раздела окружающей среды с показателем преломления n_0 (у воздуха $n_0 \approx 1$, у воды $n_0 \approx 1.33$) и *m*-й прозрачной среды с показателем n_m инициализируем динамический *флаг пересечений* $f_{\rm n} = 1$ и будем его инвертировать после каждого пересечения поверхности обособленного объекта.

Тогда в (6) можно использовать относительный показатель $n_i = (n_0/n_m)^{f_i}$ без анализа четности числа пересечений. Моделирование простых преломлений в сценах с желтой янтарной сферой ($n_{\text{янт}} = 1.6$) и белой стеклянной призмой ($n_{\text{стекл}} = 1.52$) произведено на рис. 12.

Рис. 12. Сцены с простыми преломлениями

На рис. 13 построен ряд компьютерно синтезированных изображений сцен с *непересекающимися* объектами и сложными оптическими эффектами, демонстрирующими богатые возможности и мощь метода обратной трассировки лучей.

Рис. 13. Сцены со сложными отражениями и преломлениями

Сложнее обстоит дело с *пересекающимися* прозрачными объектами из-за необходимости выбора показателя преломления области пространства, принадлежащей обоим телам. Иногда (погруженные в жидкость инородные прозрачные тела, воздушные пузырьки в стекле и т. п.) интуитивно понятно, какая среда вытесняет собой другую. Но в сборных конструкциях, например в ювелирных изделиях, выбор замещающей среды производится не из физических, а из технологических соображений путем изменения формы деталей. В компьютерном моделировании также нетрудно геометрически частично либо полностью вдвинуть прозрачные объекты друг в друга. Как же тогда, не решая задачу логического конструирования, выбрать материал и показатель преломления области пересечения?

Решение этой проблемы состоит в присвоении n_{ob} объектам сцены *приоритетов* $pr_m > 0 \quad \forall m = \overline{1, n_{ob}}$ по следующему правилу: из пары объектов с соотношением приоритетов $pr_a > pr_b$ объект *a* замещает своим материалом пересекаемую область объекта *b*. Все потенциально пересекающиеся объекты должны иметь разные приоритеты. Внешней среде, вытесняемой всеми объектами, присваивается наименьший приоритет $pr_0 = 0$.

Для хранения истории распространения луча введем *приоритетный стек трассиров*ки (ПСТ) *pst* с вершиной $\sigma = pst_1$, хранящей номер текущей среды луча. Дальнейший ход лучей, выходящих из точки **q**, определяется соотношением приоритетов σ -й среды распространения падающего луча **p** + **V**t и номера *m* пересеченного им объекта: • при $pr_m \ge pr_{\sigma}$ генерируются отраженный $\mathbf{q} + \mathbf{M}t$ и преломленный $\mathbf{q} + \mathbf{R}t$ лучи, а к освещенностям, доставленным этими лучами, добавляются освещенности фоновым и точечными источниками света;

• при $pr_m < pr_{\sigma}$ падающий луч пересекает поверхность менее приоритетного объекта и продолжает свой путь в прежнем направлении V без добавления каких-либо освещенностей. В результате часть *m*-го объекта, погруженная в среду σ , становится *невидимой*.

Для реализации описанных эффектов распространения лучей организуем следующую *дисциплину обслуживания приоритетного стека трассировки*:

• начальное состояние $pst = \{0\}$ соответствует зарождению первичного луча во внешней среде с показателем преломления n_0 ;

• прохождение луча в среде *m*-го объекта с приоритетом *pr_m* < *pr*_σ изменяет ПСТ следующим образом:

 \diamond на *входе* в объект (вход определяется по отсутствию числа *m* во *всем* списке *pst*) его

номер вставляется между вершиной стека σ и его правым остатком *pst*, полученным левым сдвигом списка *pst*:

$$m \notin pst \implies pst = \{\sigma, m, pst\};$$

• на выходе луча из объекта его номер удаляется из стека:

$$m \in pst \implies pst = pst \neg m;$$

трассировка луча, *отраженного* от поверхности *m*-го объекта с приоритетом *pr_m* ≥ *pr_σ*, производится с неизменным ПСТ;

• трассировка луча, *преломленного* на поверхности *m*-го объекта с приоритетом *pr_m* ≥ *pr*_σ, изменяет приоритетный стек следующим образом:

♦ на *входе* в объект его номер добавляется в начало стека:

$$m \notin pst \implies pst = \{m, pst\}$$

• на выходе преломленного луча номер объекта удаляется из стека:

$$m \in pst \implies pst = pst \neg m$$

Значения вершины стека σ до и χ после его изменения используются для расчета необходимого в (6) относительного показателя преломления на поверхности раздела двух сред:

$$n_{\Pi} = n_{\sigma} / n_{\chi}$$

Проиллюстрируем динамику изменения приоритетного стека трассировки с начального значения $pst = \{0\}$ на примерах прохождения преломленного луча из воздуха с приоритетом $pr_0 = 0$ через два пересекающихся объекта — сферу *1* и призму 2 с приоритетами $pr_1 \neq pr_2$:

• при $pr_1 = 2 > pr_2 = 1$ общая область объектов имеет показатель преломления сферы $n_1 = 1.6$ (рис. 14, *a*). Падающий из внешней среды луч **V**, встретившись с ближайшим объектом 2, терпит в точке **q**₁ первое преломление в луч **R**₁. Поскольку $pr_2 > pr_0$, то в вершину стека добавляется номер объекта 2, после чего стек становится равным $pst = \{2, 0\}$, а относительный показатель $n_{\Pi} = n_0 / n_2$. Следующая ближайшая точка пересечения **q**₂ принадлежит поверхности сферы 1 с бо́льшим приоритетом $pr_1 > pr_2$, поэтому ее номер также добавляется в вершину стека, после чего $pst = \{1, 2, 0\}$, а луч приобретает направление **R**₂, вычисленное при $n_{\Pi} = n_2 / n_1$. В третьей точке пересечения **q**₃ луч выходит из призмы с *меньшим* приоритетом $pr_2 < pr_1$, поэтому ее номер 2 удаляется из стека, после чего $pst = \{1, 0\}$. Луч при этом сохранил направление **R**₂. Наконец, в точке **q**₄ он выходит из сферы, ее номер 1 удаляется из стека, и тот принимает исходный вид $pst = \{0\}$, что соответствует прохождению луча **R**₃, вычисленного при $n_{\Pi} = n_1 / n_0$, снова во внешней среде;

• при $pr_2 = 2 > pr_1 = 1$ общая область объектов имеет показатель преломления призмы $n_2 = 1.52$ (рис. 14, *г*). Поскольку $pr_2 > pr_0$, то номер призмы 2 добавляется в вершину стека: $pst = \{2, 0\}$. Падающий луч V изменяет в точке \mathbf{q}_1 направление на \mathbf{R}_1 , вычисленное по (6) при $n_{\Pi} = n_0 / n_2$. Следующая ближайшая точка пересечения \mathbf{q}_2 лежит на поверхности сферы *1* с

меньшим приоритетом $pr_1 < pr_2$, поэтому ее номер добавляется под вершину стека, после чего $pst = \{2, 1, 0\}$, а луч сохраняет направление \mathbf{R}_1 . В третьей точке пересечения \mathbf{q}_3 луч выходит из призмы, поэтому ее номер 2 удаляется из стека: $pst = \{1, 0\}$, а луч меняет направление на \mathbf{R}_2 при $n_{\Pi} = n_2 / n_1$. Наконец, в точке \mathbf{q}_4 он выходит из объекта *1* во внешнюю среду, число *1* удаляется из стека преломлений и тот восстанавливает исходное состояние $pst = \{0\}$.

Небольшие изменения направлений преломленных лучей при смене приоритетов объектов объясняют геометрические и оптические различия изображений в области пересечения призмы и сферы. Визуальные доказательства выводов из проведенного анализа представлены изображениями на рис. 14, *б*, *в* и 14, *д*, *е*, построенными за четыре уровня преломления.

Рис. 14. Преломление в сценах с пересечением объектов

Метод приоритетного стека трассировки правильно работает и в случае полного охватывания одного прозрачного объекта другим, в чем убеждает рис. 15, где построены схема хода луча и изображения сцен, отличающихся соотношением приоритетов сферы pr_1 и призмы pr_2 . Последняя пара рисунков демонстрирует эффект невидимости неприоритетного объекта. При $pr_1 > pr_2$ и охватывании сферы призмой луч дважды подряд входит в эти объекты, а затем в обратном порядке выходит во внешнюю среду. Но стоило задать $pr_2 > pr_1$ — и пропали все следы присутствия сферы внутри призмы, в том числе и ее тень от точечного источника, также находящегося внутри призмы.

Рис. 15. Преломление в сценах с охватыванием объектов

Полное представление о динамике изменения приоритетного стека дает рис. 16, *a*, где схематично построено до четырех уровней трассировки одного первичного луча V в сцене с тремя прозрачными пересекающимися объектами — сферы *l* с показателем преломления $n_1 = 2$, параллелепипеда 2 с $n_2 = 2.5$ и призмы 3 с $n_3 = 1.5$. Для удобства анализа стека приоритеты объектов приняты равными их номерам и упорядочены по правилу $pr_1 < pr_2 < pr_3$. Лучи, не встречающие на своем пути никаких объектов, дальнейшему ветвлению не подвергаются и обозначены тупиковыми.

Компьютерное моделирование данной сцены выполнено на рис. 16, δ . Для сравнения на рис. 16, ϵ показан визуальный результат перенумерации объектов и прежним соотношением приоритетов и номеров $pr_1 < pr_2 < pr_3$. Оба изображения построены максимум за шесть уровней отражения и 15 уровней преломления.

Рис. 16. Работа приоритетного стека трассировки

На рис. 17 представлены фотореалистичные изображения композиций, состоящих из пересекающихся тел с внутренними точечными источниками света. В данных, подготовленных для моделирования этих сцен, был задан полный комплект сложных оптических эффектов с глубиной ветвления дерева трассировки до 12 уровней по отражению и 18 уровней по преломлению. Особенно эффектно выглядит архитектурная композиция последней сцены, включающей пять объектов: клетчатую непрозрачную доску 3, стоящую на ней полусферу 4, которая пересекается со слабо отражающим свет непрозрачным параллелепипедом 5 и с вертикальной пирамидой 2, протыкающей своей вершиной сферу 1. Приоритеты этих объектов следуют в порядке уменьшения: $pr_3 > pr_5 > pr_2 > pr_1 > pr_4$.

Рис. 17. Преломление в сценах с пересекающимися объектами

Выводы

В статье рассмотрен комплекс задач и методов синтеза фотореалистичных изображений сцен с разной сложности оптическими эффектами визуализации, тенеобразования, отражения и преломления. Получена универсальная формула расчета направления преломленного луча, правильно работающая при любых исходных данных. Корректное проведение отраженных и преломленных лучей в сценах с пересекающимися прозрачными объектами обеспечивается с помощью приоритетного стека трассировки. Изложение каждой темы сопровождается поясняющими схемами и иллюстрируется изображениями, созданными методом обратной трассировки лучей в программной среде MathCAD.

Обозначения

 $|\mathbf{V}|$ – длина вектора **V**.

 $\overline{\mathbf{V}} = \mathbf{V}/|\mathbf{V}|$ – нормированный вектор V единичной длины.

 $\mathbf{V} \circ \mathbf{N}$ – скалярное произведение векторов \mathbf{V} и \mathbf{N} .

 $\mathbf{V} \times \mathbf{N}$ – векторное произведение векторов V и N.

Библиографический список

- 1. Ландсберг, Г.С. Оптика / Г.С. Ландсберг. М.: Наука. 1976. 928 с.
- 2. **Никулин, Е.А.** Компьютерная геометрия и алгоритмы машинной графики: учеб. пособие для вузов / Е.А. Никулин. СПб.: БХВ-Петербург. 2005. 560 с.
- 3. Роджерс, Д. Алгоритмические основы машинной графики / Д. Роджерс. М.: Мир. 1989. 512 с.
- 4. Шикин, Е.В. Компьютерная графика. Динамика, реалистические изображения / Е.В. Шикин, А.В. Боресков. М.: ДИАЛОГ-МИФИ. 1995. 288 с.

Дата поступления в редакцию 11.10.2011

E.A. Nikulin

COMPUTER MODELLING OF OPTICAL EFFECTS

Improved formulae, methods and algorithms of highly realistic scenery rendering with both simple and complex optical effects — global illumination, penumbras, repeated reflections and refractions. To determine a ray deviation on an object intersection boundary, an approach of prioritized tracing stack is utilized.

Key words: illumination, shadow, reflection, refraction, raytracing, stack, priority.