НАЗЕМНЫЕ ТРАНСПОРТНЫЕ СИСТЕМЫ

УДК 621.855

Г.К. Рябов¹, В.С. Леонтьева¹, Ю.В. Федосеев²

О МЕХАНИЗМЕ ПЕРЕДВИЖЕНИЯ БЕСКОЛЕСНОЙ ВИБРОПЛИТЫ

«Ковровская государственная технологическая академия им. В.А. Дегтярева»¹, ОАО «Завод им. Дегтярева»²

Рассмотрены уравнения движения виброплиты и определены условия передвижения плиты. Определены оптимальные соотношения сдвига фаз вращающегося груза и перемещения плиты в вертикальном и горизонтальном направлениях. Определены условия работы, обеспечивающие наибольшее ударное воздействие на опорную поверхность.

Ключевые слова: виброплита, расчетная схема, система уравнений, резонанс, колебания, ударный импульс, виброуплотнение, битум, ремонт, дорога.

Виброплита представляет собой компактное и мобильное устройство с двигателем внутреннего сгорания мощностью до 3–4 КВт, предназначенное для ремонта асфальтированных дорог с помощью трамбовки битума в образовавшихся небольших выбоинах. Упрощенная расчётная схема устройства представлена на рис. 1.

Рис. 1. Расчетная схема виброплиты:

 m_1, m_2 - масса плиты и двигателя соответственно; c_1, c_2 – жесткости грунта и элементов соединения двигателя с плитой; k_1, k_2 – коэффициенты неупругого сопротивления; $P_{\ddot{o}}$ – центробежная сила вибратора; $P_{\ddot{o}}^x, P_{\ddot{o}}^y$ – горизонтальная и вертикальная составляющие $P_{\ddot{o}}; x_1, x_2$ и y_1, y_2 – оси координат перемещения плиты и двигателя по горизонтали и вертикали; ω – угловая скорость вращения неуравновешенной массы вибратора

[©] Рябов Г.К., Леонтьева В.С., Федосеев Ю.В., 2012.

Система уравнений элементов плиты записывается в виде

$$m_{1}\frac{d^{2}x_{1}}{dt^{2}} + c_{2}(x_{1} + x_{2}) + k_{2}(\dot{x}_{1} + \dot{x}_{2}) = m_{\delta}r\delta\delta^{2}\cos\omega t \cdot (G_{1} + G_{2})f;$$

$$m_{1}\frac{d^{2}y_{1}}{dt^{2}} + c_{1}y_{1} - c_{2}(y_{1} - y_{2}) + k_{1}\dot{y}_{1} - k_{2}(\dot{y}_{1} - \dot{y}_{2}) = m_{\delta}r_{\delta}\omega_{2}\sin\omega t;$$

$$m_{2}\frac{d^{2}x_{2}}{dt^{2}} + c_{2}(x_{2} - x_{1}) + k_{2}(\dot{x}_{2} - \dot{x}_{1}) = 0;$$

$$m_{2}\frac{d^{2}y_{2}}{dt^{2}} + c_{2}(y_{2} - y_{1}) + k_{2}(\dot{y}_{2} - \dot{y}_{1}) = 0,$$
(1)

где t – текущее время; m_{σ} и r_{σ} – масса центробежного груза и радиус смещения центра массы центробежного груза от оси вращения; f – коэффициент трения плиты по грунту; G_1 и G_2 – вес плиты и двигателя.

При составлении уравнений движения сделаны следующие предварительные допущения: не принимаются во внимание качательные движения элементов системы, а также нелинейность упругих элементов.

Расчетная схема и система уравнений движения плиты и двигателя рассмотрены в работе [4]. Теоретические и экспериментальные исследования показывают, что вибрации двигателя негативно отражаются на эффективности работы виброплиты. В связи с вышеизложенным двигатель устанавливается на специальных резиновых упругих элементах с прогрессивной характеристикой и с максимально возможным демпфирующим действием.

Поэтому вибрация двигателя в рабочей зарезонансной зоне по сравнению с амплитудой колебаний плиты незначительная [3], и при предварительной оценке скорости передвижения виброплиты могут не учитываться.

Тогда система дифференциальных уравнений движения плиты принимает вид:

$$\begin{cases}
m_{1} \cdot \frac{d^{2} x_{1}}{dt^{2}} + c_{2} x_{1} + k_{2} \dot{x}_{1} = m_{\delta} r_{\delta} \omega^{2} \cos \omega t - (G_{1} + G_{2}) \cdot f; \\
m_{1} \cdot \frac{d^{2} y_{1}}{dt^{2}} + (c_{1} - c_{2}) \cdot y_{1} + (k_{1} - k_{2}) \dot{y}_{1} = m_{\delta} \cdot r_{\delta} \cdot \omega^{2} \sin \omega t;
\end{cases}$$
(2)

Передвижение виброплиты обеспечивается при отклонении плиты в горизонтальном направлении в период, когда она оказывается в верхнем положении и не касается грунта. Тогда уравнения (2) принимают вид

$$\begin{cases} m_{I} \cdot \frac{d^{2} x_{I}}{dt^{2}} + c \cdot x_{I} + k \cdot \dot{x}_{I} = P_{o}^{x}; \\ m_{I} \cdot \frac{d^{2} y_{I}}{dt^{2}} + c \cdot y_{I} + k \cdot \dot{y}_{I} = P_{o}^{y}. \end{cases}$$

$$(3)$$

где \tilde{n} и k – эквивалентные жесткость и коэффициент демпфирования, определяемые экспериментально. Выражения (3) представляют собой самостоятельные независящие друг от друга дифференциальные уравнения, решения которых определяются функциями

$$\begin{aligned} x_1 &= x_{1\bar{n}\bar{o}} \,\beta_x \cos(\omega t - \theta_x); \\ y_1 &= y_{1\bar{n}\bar{o}} \,\beta_y \sin(\omega t - \theta_y). \end{aligned}$$

$$(4)$$

где $x_{1\bar{n}\bar{o}}$ и $y_{1\bar{n}\bar{o}}$ – горизонтальные и вертикальные отклонения от статического воздействия сил соответственно $P^x_{\bar{o}}$ и $P^y_{\bar{o}}$.

Коэффициенты β_x и β_y , учитывающие периодичность действия указанных сил, определяются по формулам [1, 2]:

$$\beta_{x} = \frac{\left|1 - \frac{\omega^{2}}{p_{x}^{2}}\right|}{\sqrt{\left(1 - \frac{\omega^{2}}{p_{x}^{2}}\right)^{2} + \left(2\gamma_{x}\frac{\omega}{p_{y}}\right)^{2}}};$$

$$\beta_{y} = \frac{\left|1 - \frac{\omega^{2}}{p_{y}^{2}}\right|}{\sqrt{\left(1 - \frac{\omega^{2}}{p_{y}^{2}}\right)^{2} + \left(2\gamma_{x}\frac{\omega}{p_{y}}\right)^{2}}},$$
(5)

где γ_x и γ_y – коэффициенты демпфирования. В зависимости от характера перемещений, согласно опытным данным [1, 2] $\gamma_x = 0,3$ для горизонтальных перемещений и $\gamma_y = 0,1$ для вертикальных. Фазовые углы θ_x и θ_y рекомендуются определять по формулам:

$$\theta_{x} = \arctan \frac{2\gamma_{y}\omega}{p_{x}};$$

$$\theta_{y} = \arctan \frac{2\gamma_{y}\omega}{p_{x}};$$

$$\theta_{y} = \arctan \frac{2\gamma_{y}\omega}{1 - \omega^{2}/p_{y}^{2}}$$
(6)

Согласно опытным данным, при принятых допущениях имеем равные частоты собственных колебаний $p_x = p_y = \sqrt{c'/m_1}$.

Рис. 2. Изменение фазового угла

При переходе через резонанс амплитуды колебаний плиты меняют свой знак на об-

ратный, что учитывается при построении графиков ее перемещений. Величина фазового угла θ зависит от отношения $\frac{\omega}{p}$ и величины γ . Так, в частности, на графике рис. 2 показано его изменение при $\gamma_x = 0,3$ и $\gamma_y = 0,1$ [3]. Отсюда видно, например, что при $\frac{\omega}{p} = 1,0$, $\theta_x = \theta_y = \frac{\pi}{2}$.

Тогда графики перемещений плиты по осям х и у будут происходить по уравнениям

$$x_{1} = -x_{1a}\cos(\omega t - \frac{\pi}{2}) = x_{1a}\sin\omega t;$$

$$y_{1} = -y_{1a}\sin(\omega t - \frac{\pi}{2}) = y_{1a}\cos\omega t.$$
(7)

Рис. 3. Положение плиты в зависимости от углового положения центробежного груза

В то время как возмущающие силы будут действовать согласно выражениям

$$P_{\sigma}^{x} = P_{\sigma} \cos \omega t;$$

$$P^{t} = P \sin \omega t$$
(8)

На рис.3 представлены графики $P_x = f(\omega t); P_y = f(\omega t); x_1 = f(\omega t); y_1 = f(\omega t)$ при $\frac{\omega}{p} = 1, 0$.

По приведенным графикам представляются возможным определить текущее положение плиты в зависимости от углового положения центробежного груза. Так, например, в период от 0 до $\frac{\pi}{\omega}$ на плиту действует центробежная сила P_{σ}^{y} вверх.

Через четверь периода от $\frac{\pi}{2\omega}$ до $\frac{\pi}{\omega}$ плита начинает подниматься верхи занимает верхнее положение до момента $\frac{1,5\pi}{\omega}$.

В этот же период горизонтальная составляющая центробежной силы $P_{\dot{\sigma}}^x$ воздействует на плиту, и она через последующие четверть периода начинает перемещаться в горизонтальном направлении с момента $\frac{2\pi}{\omega}$ до $\frac{3\pi}{\omega}$.

Все остальное время плита находится в нижнем положении в прижатом к асфальту состоянии. Поэтому горизонтальная составляющая P_{σ}^{x} , направленная в обратную сторону, гасится силой трения плиты о грунт, и плита в обратном направлении не перемещается.

Вычислим ударный импульс. действующий на плиту в горизонтальном направлении за период от $\frac{\pi}{2\omega}$ до $\frac{1,5\pi}{\omega}$.

 $\frac{3a}{2\omega} \frac{1}{\omega} \frac{1}{\omega} \frac{1}{\omega}$

$$I_{x} = \int_{\frac{\pi}{2\omega}}^{\frac{3\pi}{2\omega}} P_{\ddot{o}}^{x} \cos \omega t = -2 \frac{P_{\ddot{o}}}{\omega}.$$
(9)

Этот импульс переходит в количество движения виброплиты, направленное по горизонтали

$$k_x = (m_1 + m_2) V_x. (10)$$

Приравнивая I_x величине k_x , получаем

$$(m_1 + m_2)V_x = 2\frac{P_u}{\omega}2m_u\kappa_u\omega \tag{11}$$

Отсюда получаем

$$V_x = \frac{2m_{\mu}\kappa_{\mu\omega}}{m_1 + m_2} \tag{12}$$

Так, в частности, при $\omega = 600 \frac{pa\partial}{c}$; $m_u = 2 \, \mathrm{kr}$; $r_u = 3 \cdot 10^{-2} \, \mathrm{m}$; $m_1 = m_2 = 47 \, \mathrm{kr}$ получаем

 $M = 2,75 \frac{\mathrm{K}\mathrm{G}}{\mathrm{Y}}.$

При известной амплитуде колебаний представляется возможным вычислить ускорения, получаемые плитой по формуле $a_x = x_{1a}\omega^2$. На рис. 4 приведена графическая зависимость $x_{Ia} = f(\omega)$. Кроме того, на (рис. 4, δ) приведены в виде квадратных точек опытные данные по ускорениям плиты.

Из сравнения расчетных значений с опытными данными следует, что расчетные значения достаточно близко совпадают с опытными данными.

а - перемещения, б - ускорения

Выводы

1. Из анализа механизма передвижения виброплиты следует, что основной причиной передвижения виброплиты является определенное соотношение по времени сдвига фаз вращения центробежного груза и перемещения плиты в вертикальном и горизонтальном направлениях.

2. Наиболее благоприятным условием для перемещения виброплиты является зарезонансный режим вблизи от резонанса, когда имеет место смещение фаз возмущающей силы относительно перемещения виброплиты, равное $\frac{\pi}{2}$.

3. Режим работы, указанный в п. 1 и 2, является также наиболее благоприятным для обеспечения наибольшей силы удара плиты по битуму, что следует из анализа фаз смещения вертикальной составляющей силы вибратора и вертикальных перемещений плиты.

Библиографический список

- 1. **Тимошенко, С.П.** Колебания в инженерном деле: [пер. с англ.] / С.П. Тимошенко, Д.Х. Янг, У. Уивер. – М.: Машиностроение, 1985. – 472 с.
- 2. Пановко, Я.Г. Основы прикладной теории колебаний и удара / Я.Г. Пановко. М.: Машиностроение, 1976. – 320 с.
- 3. **Рябов, Г.К.** Проблемы вибрации в транспортной технике / Г.К. Рябов, О.Ю. Неедро, Д.А. Бодров. Ковров; КГТА, 2009. 108 с.
- 4. **Рябов, Г.К.** Предварительная оценка параметров колебаний виброплиты / Г.К. Рябов, В.С. Леонтьева, В.П. Рогов / Камские чтения. Набережные Челны: КГИЭА, 2011. С. 93–97.

Дата поступления в редакцию 09.07.2012

G.K. Ryabov¹, V.S. Leontieva¹, Y.V. Fedoseev²

ABOUT THE MOVEMENT MECHANISM OF WHEELLESS VIBROPLATE

Kovrov state technological academy n.a. V.A. Degtaryov¹, Public Corporation "The Plant n.a. V.A. Degtaryov"²

Purpose: The theoretical investigation of the wheelless vibroplate movement. Full-load conditions determination for securing the maximum striking force to the ground surface. Optimum proportion researching between the phase shifting of revolving charge and vibroplate in vertical and horizontal directions.

Design/methodology/approach: The study is based on theoretical analysis of differential equations that describes the process of wheelless vibroplate movement. The main constructive parameters of the vibroplate are included into mathematical model.

Findings: It is possible to apply the research results for preliminary estimation of the wheelless vibroplate movement mechanism and determination of optimum proportion between the phase shifting of the revolving and sliding motion.

Research limitations/implications: The present study provides a starting-point for further research in the field of wheelless vibroplate theory.

Originality/value: The main peculiarity of the study is original approach of theoretical research of wheelless vibroplate movement mechanism that could have a good practical application during the vibroplate design stage.

Key words: vibroplate, design scheme, equations system, resonance, vibrations, impact momentum, bitumen, repairing, road.