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Purpose: The goal of this study is to solve the linear advection--diffusion equation with a variable speed on a semi-

infinite line. The variable speed is determined by an additional condition at the boundary, which models the dynamics 

of a contact line of a hydrodynamic flow at 180˚contact angle.  

Approach: The investigation is carried out by an application of Laplace transform in spatial coordinate. Properties of 

Green's function for the fourth-order diffusion equation are used in analysis of implicit solutions of the linear advection-

diffusion equation.  

Findings: We prove local existence of solutions of the initial-value problem associated with the set of over-determining 

boundary conditions in the form of the fractional power series in time variable. We also analyze the explicit solutions in 

the case of a constant speed to show that the inhomogeneous boundary condition induces change of convexity of the 

flow at the contact line in a finite time.  

 

Key words: linear advection-diffusion equation, variable speed, contact line, Laplace transform, Green’s function. 

 

1. Introduction 
 

Contact lines are defined by the intersection of the rigid and free boundaries of the flow. 

Flows with the contact line at 180˚ contact angle were discussed in [2, 4], where corresponding so-

lutions of the Navier-Stokes equations were shown to have no physical meanings. Recently, a dif-

ferent approach based on the lubrication approximation and thin film equations was developed by 

Benilov & Vynnycky [1]. 

As a particularly simple model for the flow shown on Fig. 1, the authors of [1] derived the 

linear advection–diffusion equation for the free boundary h(x,t) of the flow: 
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The contact line is fixed at x = 0 in the reference frame moving with the velocity -V(t) and is 

defined by the boundary conditions h(0,t) = 1 and hx(0,t) = 0. The flux conservation is expressed by 

the boundary condition 
2

1
),0( thxxx  (set α

3
 = 3 in equations (5.12)–(5.13) in [1]). 

We assume that h, hx, hxx → 0 as x→∞: in fact, any constant value of h at infinity is allowed 

thanks to the invariance of the linear advection–diffusion equation (1) with respect to the shift and 

scaling transformations. With three boundary conditions at x = 0 and the decay conditions as x → 

∞, the initial-value problem for equation (1) is over-determined and the third (over-determining) 

boundary condition at x = 0 is used to find the dependence of V on t. 

We shall consider the initial-value problem with the initial data h(x,0) = h0(x) for a suitable 

function h0. In particular, we assume that the profile h0(x) decays monotonically to zero as x→∞ 
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and that 0 is a non-degenerate maximum of h0 such that h0(0) = 1, 0)0('
0 h , and 0)0(0 h , see 

Fig. 1. If the solution h(x,t) losses monotonicity in x during the dynamical evolution, for instance, 

due to the value of hxx(0,t) crossing 0 from the negative side, then we say that the flow becomes 

non-physical for further times and the model breaks. Simultaneously, this may mean that the veloci-

ty V(t) blows up, as it is defined for sufficiently strong solutions of the advection–diffusion equation 

(1) by the pointwise equation: 

 

hxxxxx(0,t)  = V(t) hxx(0,t),     (2) 

 

which follows by differentiation of (1) in x and setting x→ 0. 

The main claim of [1] based on numerical computations of the reduced equation (1) as well as 

more complicated thin-film equations is that for any suitable h0, there is a finite positive time t0 such 

that V(t) → ∞ and hxx(0,t) → 0
-
 as t ↑ t0. Moreover, it is claimed that V(t) behaves near the blowup 

time as the logarithmic function of t, e.g. 

 

201 )log(~)( CttCtV     as   t ↑ t0,                                                      (3)
 
 

where C1, C2 are positive constants. 

 

 
Fig. 1. Schematic picture of the flow between rigid boundaries 

 

This paper is devoted to analytical studies of solutions of the advection–diffusion equation (1) 

and the effects coming from the inhomogeneous boundary condition 
2

1
),0( thxxx  associated with 

the flux conservation. In particular, we rewrite the evolution equation for the variable u = hx in the 

form 

 

ut + uxxxx = V(t) ux,    x > 0,    t > 0,     (4) 

 

subject to the boundary conditions at the contact line 

 

u(0, t) = 0,  ,
2

1
),0( tuxx

 
,0),0( tuxxx    t ≥ 0,    (5) 

 

where the boundary conditions uxxx(0,t) = hxxxx(0,t) = 0 follows from the boundary conditions        

h(0,t) = 1 and hx(0,t) = 0 as well as the advection-diffusion equation (1) as x → 0. 
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To simplify the problem, we shall also consider the model for given constant V(t) = V0 and 

drop the third over-determining boundary conditions at the contact line: 
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Both problems (4)–(5) and (6) are considered under the initial condition u(x,0) = u0(x) with 

u0(0) = 0, 0)0(0 u ,and 
2

1
)0(0 u  as well as the decay condition u, ux, uxx → 0 as x → ∞. 

Using Laplace transform in spatial coordinate and Green's function for the fourth-order diffu-

sion equation, we derive an explicit solution of the boundary-value problem (6). In the case V0 = 0, 

we show that the inhomogeneous boundary condition 
2

1
),0(),0(  tuth xxxxx  leads to the secular 

growth of the boundary value hxx(0,t) = ux(0,t) to positive infinity as t → ∞. As a result, even if 

hxx(0,t) < 0 initially, the convexity of the solution h(x,t) at the boundary x = 0 is lost in a finite time. 

In the case V0 < 0, we show that no secular growth is observed but the convexity of the solution at 

the boundary is still lost in a finite time. Applying the same method, we prove local existence of 

solutions of the original boundary-value problem (4)–(5) in the form of fractional power series in 

time variable t. This prepares us to tackle the original conjecture on the finite-time blow-up in the 

dynamical evolution of the reduced model (1), which is still left opened for forthcoming studies. 

The remainder of this paper is organized as follows. Section 2 reports explicit solutions of the 

boundary–value problem (6) for V0 = 0 and V0 ≠ 0. Section 3 gives the local existence result for the 

boundary-value problem (4)–(5). Appendix A reviews properties of Green's function for the fourth-

order diffusion equation. 

 

2. Solution for V(t) = V0 
 

Because the coefficient V(t) changes in time variable t in the framework of the original advec-

tion-diffusion equation (1), the Laplace transform in time t is not a useful method for this problem. 

On the other hand, the boundary-value problem (1) is formulated on half-line, and hence we can use 

Laplace transform in space variable x: 

0,),(),(
0

 


 pdxtxuetpU px .                                                (7) 

 

We shall develop this method to solve the boundary–value problem (6). The explicit solution 

of this problem will help us to analyze the effects of the inhomogeneous boundary condition 

2

1
),0( tuxx  and the constant advection term V(t) = V0 on the temporal dynamics of the advection-

diffusion equation with the fourth-order diffusion. 

Let us denote the boundary values: 
 

β(t) = ux(0,t),     γ(t) = uxxx(0,t).     (8) 
 

Using Laplace transform (7), we rewrite an evolution problem associated with the advection–

diffusion equation (6): 
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where U0(p) is the Laplace transform of u0(x) = u(x,0). By using the variation of parameters,  

we obtain 
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Using the inverse Laplace transform, we write this solution in the form: 
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  (11) 

 

where Re(c) > 0 so that the singularities of the integrand in the complex p-plane remain to the left of 

the contour of integration. 

If t > 0 is finite, ),(1
0  RLu  and ),(γβ, 

 RLloc  Fubini's Theorem implies that the integra-

tion in p and in y, s can be interchanged. Let us introduce Green's function Gt(x) for the fourth-order 

diffusion equation (see Appendix A): 
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Using Green's function, we can rewrite the solution (11) in the implicit form: 
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  (12) 

 

The solution is said to be in the implicit form, because the functions β(t) and γ(t) determined by the 

boundary conditions (8) are not specified yet. 

We verify that 0),(lim 


txu
x

, no matter what β and γ are, as long as they are bounded  

function of t. Indeed, by the Lebesgue's Dominated Convergence Theorem, we have 
 

0)()(
0

00 


dyyuytVxGt    as   x → ∞ 

if )(1
0  RLu , because Gt(x) → 0 as x → ∞. On the other hand, the other three convolution inte-

grals are bounded if )(γβ, 
 RLloc  and t > 0 is finite, because Gt, tG and tG  have integrable singu-

larities at t = 0. By the same Lebesgue's Dominated Convergence Theorem, these three integrals 

decay to zero as x → ∞. 

It follows from this construction that the only way to determine the functions β(t) and γ(t) in 

the solution (12) is to use the boundary conditions at x = 0, e.g. the boundary conditions u(0,t) = 0 

and ux(0,t) = β(t). In what follows, this step is performed separately for the cases of V0 = 0 and  

V0 ≠ 0. 

 

2.1. Case V0 = 0 

 

We rewrite the solution (12) for V0 = 0: 
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Using (A.3) and (A.4) for Green’s function Gt(x) and the boundary condition u(0,t) = 0, we evaluate 

this expression at x = 0 and obtain an integral equation for β and γ: 
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To use the boundary condition ux(0,t) = β(t), we shall recall from equation (A.5) that the  

function )(xGt
  behaves like O(t

-1
) for any x > 0 and hence is not integrable in t at t = 0. Therefore, 

we have to be careful to differentiate the solution in the above convolution form. The last term of 

the solution (13) can be computed by using the Fourier transform: 
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Differentiating this expression in x and integrating by parts in s, we obtain 
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where 
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Here we note that all integrals are evaluated in the principal value sense, because the half-residue at 

k = 0 is canceled out in the resulting expression (15). Also we note that the decay of vx(x,t) to zero 

as x → ∞ is satisfied because of the symmetry and normalization of Gt in (A.6). We can now use 

the boundary condition ux(0,t) = β(t) to obtain the exact value for β(t): 
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  (17)                                       

After β(t) is found uniquely from (17), γ(t) is found uniquely from the integral equation (14). This 

computation completes the construction of the exact solution of the boundary-value problem (6) for 

V0 = 0 (see also [5] for other solutions of this fourth-order diffusion equation). Now we turn to the 

analysis of the solution thus obtained. 

Theorem 1. Consider the advection-diffusion equation (6) for V0 = 0 with the initial data 

)(1
0  RLu . Then, there exists a solution )( 

  RRLu of the evolution problem in the explicit 

form (13), where )(γβ, 
 RLloc  are defined by (14) and (17) and 


)(lim t

t
 . 

Proof. The convolution integral in the explicit expression (17) can be analyzed from the  

representation (A.5) for Green's function Gt. If )(1
0  RLu , then 
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Therefore, )(β 
 RLloc and β(t) ~ t

1/4
 as t → ∞  due to the second term in (17). Now, the integral 

equation (14) for γ(t) with a weakly singular kernel is well defined and solutions exist with 

)( 

 RLloc . Similarly, the solution )( 

  RRLu  is well defined by (13). 
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Remark 1 One can show that there is no singularity of the solution for β(t) as t→ 0 so that 

)0()0( 0u  by continuity. Also, one can show that the solution of the integral equation (14) for 

γ(t) exists in the closed form: 



0

0 )()(2)( dyyuyGt t . 

Coming back to the original question, if u0(0) = 0, 0)0(0 u , and 
2

1
)0(0 u , then there is a 

finite value of t0(0,∞) such that ux(0,t) > 0 for all t > t0, that is, h(x,t) loses monotonicity at     

the boundary x = 0 in a finite time t0 (recall that u = hx). This dynamical phenomenon occurs be-

cause of the inhomogeneous boundary conditions 
2

1
),0( tuxx  even in the absence of the  

advection term in the fourth-order diffusion equation (6). 

 

2.2. Case V0≠ 0 
 

We have the solution in the implicit form (12) and we need to derive integral equations on 

the unknown functions β(t) and γ(t). One integral equation follows again from the boundary  

condition u(0,t) = 0: 
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To find another integral equation from the boundary condition ux(0,t) = β(t), we have to use the 

technique explained in Section 2.1 and to compute the derivative of the solution (12) in x: 

 

.)())(()())((

)()0()(
2

1
)())((

))((
2

1
)()(),(

0

00

0

0

0

0

0

0

0

0

00





















t

st

t

st

t

t

st

t

sttx

dssstVxGVdssstVxH

tVxHtdssstVxG

dsstVxGdyyuytVxGtxu



   (19) 

 

We can now use the boundary condition ux(0,t) = β(t) to obtain another integral equation for β  

and γ: 
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The system of integral equations (18) and (20) completes the solution (12) for the case V0 ≠ 0.  

Because of the original motivation to study behavior of the flow on Fig. 1 for large negative V(t), 

see equation (3), we shall analyze the obtained solution for V0 < 0 only. 

Theorem 2. Consider the advection-diffusion equation (6) for V0 < 0 with the initial data 

)(1
0  RLu . Then, there exists a solution )( 

  RRLu  of the evolution problem in the explicit 

form (12), where )(γβ, 
 RL  are defined by (18) and (20) with 
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Proof. Similarly to the proof of Theorem 1, it is easy to show from the integral equations (18) 

and (20) that if )(1

0  RLu , then )(,', 

 RLloc . We shall now compute the limit of β(t) and 

γ(t) as t → ∞: 
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To deal with the first integral equation (18), we first notice the explicit computation by using the 

Fourier transform: 
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where the integrals in s and k can be interchanged by Fubini's Theorem and the integration is per-

formed in the principal value sense. We can now explicitly compute the limit as t → ∞ by using  

Lebesgue's Dominated Convergence Theorem: 
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This computation gives the last term of the integral equation (18) as t → ∞. To deal with the first 

term on the right-hand side of (18), we write 

 

,)(ˆ)(
2

1
)()( 0

)(

0 0

0

)(

00
0

4
0

4

  






 





















 dkkuedkdyyuedyyuytVG

ikVktikyikVkt

t


 where 

.)(
2

1
:)(ˆ

0
00 


 dyyueku iky

  
By Lebesgue's Dominated Convergence Theorem, this integral converges to zero as t → ∞ as long 

as )(1
0  RLu . 

To deal with the second term on the left-hand side of the integral equation (18), we rewrite it 

in the form 
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Since )(β 
 RLloc  with the assumed limit in (22), we apply Lebesgue's Dominated Convergence 

Theorem and compute the integral in the principal value sense: 
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The first term on the left-hand side of the integral equation (12) is more tricky. First, we re-

write it in the form, 
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However, if )(γ 
 RLloc  

with the assumed limit in (22), application of Lebesgue's Dominated 

Convergence Theorem yields the integral in k with a simple pole at k = 0: 
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The integral is no longer understood in the principal value sense. Instead, we return back to the 

treatment of the inverse Laplace transform in (11) with Re(c) > 0, use transformation p = ik, and 

shift the contour of integration in k below the pole at k = 0. As a result, computations of the integral 

above are completed with the half-residue term at the simple pole at k = 0 and the principal value 

integral: 
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Combining all computations together, we obtain the following linear equation on β∞ and γ∞ from 

the integral equation (18) in the limit t → ∞: 
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To deal with the second integral equation (20), we use the Fourier transform again to write 
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where the integrals are understood in the principal value sense. If  locL γ,' , 
 
with the assumed 

limits (22), Lebesgue's Dominated Convergence Theorem implies that 
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Similar to the previous computations, we prove that 
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and 
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where the last integral is computed in the principal value sense because equations (19) and (20) are 

derived in the principal value sense. 

Combining all computations together, we have obtained the following linear equation on β∞ and γ∞ 

from the integral equation (20) in the limit t → ∞: 
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Solving the linear system (23) and (24), we obtain (21) and the theorem is proved. 

Coming back to the original question, if u0(0) = 0, 0)0(0 u , and 
2

1
)0(0 u , then there is a fi-

nite value of t0(0,∞) such that ux(0,t) > 0 for all t > t0. Therefore, like in the case V0 = 0, the function 

h(x,t) loses monotonicity at x = 0 in a finite time t0 (where u = hx) with the only difference that 

ux(0,t) remains finite and positive as t → ∞. We conclude that the presence of the advection term 

with V0 < 0 in the fourth-order diffusion equation (6) does not prevent the loss of monotonicity in x 

in a finite time but still stabilizes the solution globally as t → ∞. In both cases V0 = 0 and       V0 < 0, 

the monotonicity of h in x is lost because of the inhomogeneous boundary condition
2

1
),0( thxx . 

 

3. Solution of the original problem 
 

We shall now use Laplace transform (7) to obtain the implicit solution to the advection-

diffusion equation (4) with a variable speed V(t). Let us denote 
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and obtain the Laplace transform solution in the form: 

 

.)(
2

1
)(),(

0

2))()(()()(

0

44

dssppeepUtpU

t

psWtWpstptWtp

 







      (25) 

 

Compared with the solution (10), we have set γ(t) = 0 because of the third boundary condition in 

(5). Using the inverse Laplace transform and recalling the definition of Green's function Gt(x) (see 

Appendix A), we obtain the analogue of the implicit solution (12): 
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Now we have two unknowns β and W and two integral equations from the boundary conditions 

u(0,t) = 0 and ux(0,t) = β(t). 

From the boundary condition u(0,t) = 0, we obtain the integral equation: 
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To find another integral equation from the boundary condition ux(0,t) = β(t), we differentiate 

the solution (26) in x: 
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From the boundary condition ux(0,t) = β(t), we obtain another integral equation: 
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We shall prove that the system of two integral equations (27) and (29) determines uniquely 

the function β(t) and V(t) locally for t > 0. The following theorem gives the result  in the form of the 

fractional power series in t. 
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Using the representation (A.5) of the Green function with )(RCg  , we obtain for the three 

terms of the integral equation (27): 
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At the first powers of t

1/4
, we obtain a system of linear algebraic equations on the coefficients 

of the fractional power series (31): 
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and so on.  

Using the explicit values for the integrals (A.9)(A.13) and the initial conditions (30), we  

obtain )0(/)0(),0(β 0
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0000 uuVu  , and the linear equation 
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Similarly, we expand all terms of the second integral equation (29): 
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At the first powers of t
1/4

, we obtain a system of linear algebraic equations on the coefficients 

of the fractional power series (31): 
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and so on. Again, using the explicit values for the integrals (A9)(A.13) and the initial conditions 

(30), we obtain )0(/)0(),0( 0
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0000 uuVu  , and the linear equation 
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The system of linear equations (32) and (33) has a unique solution 
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which is true. Note that the constraint )0(/)0( 0
)4(

00 uuV   also follows from the pointwise equation 

(2) obtained for sufficiently smooth solutions. Similarly, the second equation (34) follows from the 

advection-diffusion equation (4) after one derivative in x and the limit x → 0 and t → 0. 

It remains to prove that the system of linear equations obtained from the system of integral 

equations (27) and (29) can be solved at each order of t
(n+1)/4

 and t
n/4

, respectively, for n   4. From 

the previous computations, we can deduce that the first integral equation at t
(n+1)/4

 gives a linear  

equation on variables (βn/4,V(n-3)/4) of the power series (31): 
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where the dots on the right-hand side denote the terms expressed through derivatives of u0(x) at  

x  = 0 and the previous terms of the power series (31). Similarly, the second integral equation at t
n/4

 

gives another linear equation on variables ( βn/4,V(n-3)/4): 
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The system of linear equations (35) and (36) is non-degenerate if 
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The coefficients {Cn} are computed numerically for n   1 (see Fig. 2). The sequence is monoton-

ically increasing. It approaches closely to 1 at n = 8, where C8 ≈ 0.96, and n = 9, where C9 ≈ 1.04. 

Therefore, Cn   
1 for all n   1 so that the linear system is non-degenerate and a unique solution for 

(βn/4, V(n-3)/4) exists for any n   4. 

 

 

 
 

Fig. 2. Numerical approximations of Cn defined by (37) 

 

In the present time, we cannot prove yet that the system of integral equations (27) and (29) 

leads to a finite-time blow-up, according to the conjecture in [1]. Nevertheless, numerical computa-

tions show that the blow-up holds for a generic set of initial data. Fig. 3 shows the behavior of func-

tions β(t) and V(t) near the blow-up time. It follows from this figure that   β(t) = hxx(0,t) → 0 at the 

same time as V(t) → -∞ with  β(t) V(t)
1/3

 → C0, where C0 > 0 is a numerical constant. In other 

words, we conclude with the conjecture that β(t) ~ V(t)
-1/3

 as  V(t) → -∞ in a finite time  t0 (0,∞). 
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Fig. 3. Numerical computations of (t) and V(t) for the advection-diffusion equation (1).  
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Appendix. Green's function 
 

Let us define the fundamental solution of the fourth-order diffusion equation: 
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where δ is a standard Dirac delta-function in the distribution sense.The fundamental solution is usu-

ally referred to as Green's function and we shall denote it by 
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Using the Fourier transform in x, we can obtain the explicit expression for Green's function: 
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In particular, we have Gt(-x) = Gt(x) for all x  R and 
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where Г is the standard Gamma function.The Green's function can be represented in the self-similar 

form by 
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where )()(2 RLRLg  . Therefore, Gt decays to zero as t→∞ in any L
p
 norm for p ≥ 2. In partic-

ular, 
2/14/1 /)(,/)( tgxGtgxG

LtLt 
 , and so on, for any x  R. 

By the stationary phase method (see, e.g., Chapter 5 in [3]), g(z) and all derivatives of g(z)  

decay to zero as |z| →∞ faster than any algebraic powers. This gives the decay of Gt(x) and any  

x-derivative of Gt(x) as |x| → ∞ for any fixed t > 0. Although Gt and g are not L
1
 functions, they  

satisfy the normalization conditions: 
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The even function g: R → R satisfies the ordinary differential equation 

 

,,4
4

4

Rz
dz

dg
zg

dz

gd
       (A.7) 

subject to the initial values 
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and the decay behavior as |z| →∞. It is clear from the differential equation that g  C
∞
(R) satisfies a 

number of integral constraints: 

 

),0(4)(
0

gdzzzg 


                 (A.9) 

 

,0)(
0

2 


dzzgz       (A.10) 

 

),0(8)(
0

3 gdzzgz 


      (A.11) 

 

,12)(
0

4 


dzzgz       (A.12) 

 

),0(!164)(
0

5 gdzzgz 


     (A.13) 

 

and so on. 
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О РЕШЕНИЯХ УПРОЩЕННОЙ МОДЕЛИ ДИНАМИЧЕСКОЙ ЭВОЛЮЦИИ 

КОНТАКТНЫХ ЛИНИЙ
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, 
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Цель: Цель работы заключается в решении линейного уравнения адвекции-диффузии с переменной скоростью 

на полубесконечной оси. Переменная скорость определяется дополнительным условием на границе, которое 

моделирует динамику контактной линии гидродинамического потока с контактным углом 180˚.  

Научный подход: Исследование проведено с применение преобразования Лапласа по пространственной коор-

динате. Свойства функции Грина для уравнения диффузии 4-го порядка использованы при анализе неявных 

решений линейного уравнения адвекции-диффузии.  

Результат: Доказано локальное существование решения начальной задачи ассоциированной с набором пере-

определенных граничных условий в форме дробно-степенного ряда по временной переменной. Проанализиро-

ваны явные решения в случае постоянной скорости, что показывает, что неоднородные граничные  условия 

приводят к изменению  выпуклости потока в контактной линии за конечное время.  

 

Ключевые слова: линейное уравнение адвекции-диффузии, переменная скорость, контактная линия, 

преобразование Лапласа, функция Грина. 

 


