УДК 621.372.8

М.В. Кольцов, Ю.А. Иларионов

ВОЛНА ЗОММЕРФЕЛЬДА *E*₀₀ В ОДНОПРОВОДНОЙ ЛИНИИ НА КВАЗИОПТИЧЕСКИХ ЧАСТОТАХ

Нижегородский государственный технический университет им. Р. Е. Алексеева

Целью статьи является разработка методики решения дисперсионного уравнения для волны Зоммерфельда E_{00} в однопроводной линии в диапазоне частот, где безразмерные поперечные волновые числа внутри и вне проводника велики (|x| >> 1, |y| >> 1).

Предлагается теоретический подход к решению точного дисперсионного уравнения для волны E_{00} , использующий особенности поведения комплексных волновых чисел $x = x_1 + jx_2$, $y = y_1 + jy_2$ в рассматриваемой области частот и приближенные выражения для функций, входящих в дисперсионное уравнение, при больших значениях аргументов.

Разработанная методика применена для расчета основных характеристик волны E_{00} в медном проводнике в диапазоне квазиоптических частот ($f = (30 \div 100)$ ТГц) при различных значениях радиуса провода. В рассмотренном примере расчета нижняя граница терагерцового диапазона соответствует ограничению $|y| \ge 10$, верхняя граница – таким значениям |y| >> 10, при которых возможна появляющаяся зависимость удельной проводимости медного проводника от частоты. Особенно это наблюдается в световом диапазоне частот (сотни терагерц).

Ценность разработанной методики расчета основных характеристик волны E_{00} в однопроводной линии заключается в том, что решение сложного дисперсионного уравнения в комплексных плоскостях аргументов $x = x_1 + jx_2$, $y = y_1 + jy_2$ сведено к решению алгебраического уравнения относительно вспомогательной величины $q = y_2/y_1$ в действительной области $q \ge 0$. Остальные величины через q вычисляются по аналитическим формулам.

Ключевые слова: методика расчета, волна Зоммерфельда, однопроводная линия, квазиоптические частоты.

Методика решения дисперсионного уравнения для волны E_{00} (волны Зоммерфельда) в однопроводной линии с конечной проводимостью, окруженной диэлектриком с потерями, в области частот, где скин-эффект сильный (модуль безразмерного поперечного волнового числа внутри провода |x| >> 1), а модуль безразмерного поперечного волнового числа вне провода |y| << 1, разработана в [1, 2]. В [1–4] также исследовано влияние на поведение коэффициентов замедления, затухания и волнового сопротивления волны E_{00} параметров линии (радиуса *a* и удельной проводимости $\tilde{\sigma}_{M1} = 60\lambda\sigma_{M1} = 3,42\cdot10^4$ провода) и окружающей среды (относительной диэлектрической проницаемости ε_{r2} и удельной проводимости σ_2), приведены результаты исследования распределения электромагнитного поля для волны E_{00} по поперечному сечению в окружающем линию пространстве для медных проводов радиусами a = 0,5;1;2 мм в диапазоне частот f = 0,5-2 ГГц.

В работе [5] разработана вторая методика решения дисперсионного уравнения для волны E_{00} в цилиндрическом проводнике с конечной проводимостью ($\sigma_{M1} \neq \infty$) в области частот, где поперечные волновые числа внутри и вне проводника велики |x| >> 1, |y| >> 1). Это возможно, например, либо в металлических проводниках $\sigma_{M1} = (1,...,6) \cdot 10^7$ (Ом·м)⁻¹) малых

[©] Кольцов М.В., Иларионов Ю.А., 2013.

размеров (a = (1,...,50) мм) на квазиоптических частотах ($f \ge 30$ ТГц), либо для проводника морская вода ($\sigma_{M1} = (1,...,5)$ (Ом·м)⁻¹) больших размеров ($a = R_3 = 6375$ км) на частотах f < 1 МГц. В [5] также приведены результаты расчетов только на крайних частотах диапазона, где |x| >> 1, |y| >> 1, для проводника-морская вода и $a = R_3$ при одном значении $\sigma_{M1} = 5$ (Ом·м)⁻¹.

Данная работа посвящена расчету комплексных поперечных волновых чисел $x = x_1 + jx_2$, $y = y_1 + jy_2$, коэффициентов замедления $\tilde{\beta}_1$ и затухания β_2 волны Зоммерфельда в медном проводнике в диапазоне квазиоптических частот ($f = (30 - 100 \text{ T}\Gamma\mu)$ для нескольких значений радиуса проводника (a = (5,...,50) мм).

Точное дисперсионное уравнение для волн E_{0m} (m = 0;1;2;...) в цилиндрическом проводнике радиуса a с конечной проводимостью σ_{M1} имеет вид [1–5]

$$\dot{\varepsilon}_{r1} \frac{F_0(x)}{x^2} = \dot{\varepsilon}_{r2} \frac{\Phi_0(y)}{y^2},\tag{1}$$

где $\dot{\varepsilon}_{r1}$ и $\dot{\varepsilon}_{r2}$ – комплексные относительные диэлектрические проницаемости проводника и окружающей среды;

$$F_0(x) = -xJ_1(x)/J_0(x),$$
(2)

$$\Phi_0(y) = -yH_1^{(1)}(y) / H_0^{(1)}(y), \qquad (3)$$

 $J_0(x)$ и $J_1(x)$ – функции Бесселя 1-го рода нулевого и первого порядков от комплексного аргумента; $x = x_1 + jx_2$ $H_0^{(1)}(y)$ и $H_1^{(1)}(y)$ – функции Ганкеля 1-го рода нулевого и первого порядков от комплексного аргумента $y = y_1 + jy_2$, где $y_2 > 0$. Только при этом условии все составляющее электромагнитного поля волны E_{0m} на бесконечности обращаются в нуль.

Нормированные поперечные волновые числа внутри $(0 \le r \le a, 0 \le \phi \le 2\pi)$ и вне $(a \le r \le \infty, 0 \le \phi \le 2\pi)$ проводника определяются формулами:

$$x = \left(\frac{2\pi a}{\lambda}\right) \sqrt{\dot{\varepsilon}_{r1} \dot{\mu}_{r1} - \tilde{\beta}^2} , \qquad (4)$$

$$y = \left(\frac{2\pi a}{\lambda}\right) \sqrt{\dot{\varepsilon}_{r2} - \tilde{\beta}^2} , \qquad (5)$$

где

$$\dot{\varepsilon}_{r1} = \varepsilon_{r1} - j \frac{\sigma_{M1}}{\omega \varepsilon_0} = \varepsilon_{r1} - j \widetilde{\sigma}_{M1}, \qquad (6)$$

$$\widetilde{\sigma}_{M1} = \frac{\sigma_{M1}}{\omega \varepsilon_0} = 60\lambda \sigma_{M1},$$

$$\dot{\mu}_{r1} = \mu_{r1},$$
(7)

(магнитные потери не учитываются)

$$\dot{\varepsilon}_{r2} = \varepsilon_{r2} (1 - j \operatorname{tg} \delta_2) = \varepsilon_{r2} - j 60\lambda \sigma_2, \qquad (8)$$
$$\varepsilon_{r2} \ge 1, \ \operatorname{tg} \delta_2 = \frac{60\lambda \sigma_2}{\varepsilon_{r2}} \ge 0,$$

$$\dot{\mu}_{r2} = \mu_{r2} = 1, \qquad (9)$$

 λ – длина волны в вакууме, $\tilde{\beta} = \dot{\beta}/k = \dot{\beta}/\left(\frac{2\pi}{\lambda}\right)$ – относительная комплексная постоянная распространения (комплексный коэффициент замедления); $\tilde{\beta} = \tilde{\beta}_1 - j\tilde{\beta}_2$, $\tilde{\beta}_1 \ge 1$, $\tilde{\beta}_2 \ge 0$.

На квазиоптических частотах ($f \ge 30$ ТГц), также, как в диапазоне СВЧ, комплексный аргумент $x = x_1 + jx_2$, где |x| > 1, имеет вид [1, 2]:

$$x \approx \frac{a}{\delta} \left(-1 + j \right), \tag{10}$$

где величина $\delta = \frac{\lambda}{2\pi} \sqrt{\frac{2}{\tilde{\sigma}_{M1} \mu_{r1}}}$ есть толщина скин-слоя.

Например, для медного проводника с параметрами $\sigma_{M1} = 5.7 \cdot 10^7 (\text{Ом} \cdot \text{м})^{-1}$, $\mu_{r1} = 1$ на частоте $f = 30 \text{ T}\Gamma\mu$ ($\lambda = 0.01$ мм) нормированная удельная проводимость $\tilde{\sigma}_{M1} = 60\lambda\sigma_{M1} = 3.42 \cdot 10^4$. Отсюда толщина скин-слоя проводника на частоте $f = 30 \text{ T}\Gamma\mu$ составляет

$$\delta = \frac{0.01}{2\pi} \sqrt{\frac{2}{3.42 \cdot 10^4}} \text{ mm} \approx 1.2171 \cdot 10^{-5} \text{ mm}.$$

При а = 10 мм получаем

$$\frac{a}{\delta} \approx 8,2163 \cdot 10^5 >> 1.$$

В отличие от диапазона СВЧ, где комплексный аргумент $y = y_1 + jy_2$ мал (|y| <<1), на квазиоптических частотах модуль комплексного аргумента y велик (|y| >>1).

Вводя вспомогательную величину $q = y_2/y_1$, используя приближенные формулы для функции $F_0(y)$ при |x| >> 1 и $\Phi_0(y)$ при |y| >> 1, сводим решение дисперсионного уравнения (1) для волны E_{00} в комплексной плоскости аргументов $x = x_1 + jx_2$, $y = y_1 + jy_2$ к решению алгебраического уравнения относительно q в действительной области $q \ge 0$ для случая $\dot{\varepsilon}_{r2} = 1$ [5]:

$$L_1(q) = \frac{\left(\tilde{\sigma}_{M1} + \varepsilon_{r1}\right)}{4\frac{a}{\delta}},\tag{11}$$

где

$$L_{1}(q) = \frac{Q_{1}(q) - q}{\left(1 - q^{2}\right) + \frac{\left(\widetilde{\sigma}_{M1} - \varepsilon_{r1}\right)}{\left(\widetilde{\sigma}_{M1} + \varepsilon_{r1}\right)} 2q},$$
(12)

$$Q_{1}(q) = \frac{2q - \frac{(\breve{\sigma}_{M1} - \varepsilon_{r1})}{(\breve{\sigma}_{M1} + \varepsilon_{r1})} (1 - q^{2})}{(1 - q^{2}) + \frac{(\breve{\sigma}_{M1} - \varepsilon_{r1})}{(\breve{\sigma}_{M1} + \varepsilon_{r1})} 2q},$$

$$a/\delta > 1.$$
(13)

Задавая параметры проводника ($a, \sigma_{M1}, \mu_{r1}, \varepsilon_{r1}$) и частоту f, из уравнения (11) находим вспомогательную величину q. Действительная и мнимая части поперечного волнового числа x на основании (10) определяются формулами:

$$x_1 \approx -\frac{a}{\delta}, \tag{14}$$
$$x_2 \approx \frac{a}{\delta},$$

где *а*/δ >>1.

Через вычисленную величину q и функцию $Q_1(q)$ действительная и мнимая части поперечного волнового числа y определяются формулами [5]:

$$y_1 \approx \frac{1}{2[Q_1(q) - q]},$$

 $y_2 \approx \frac{q}{2[Q_1(q) - q]}.$
(15)

Из соотношения (5) при $\dot{\varepsilon}_{r2} = 1$ находим [3, 4] действительную и мнимую части комплексного коэффициента замедления $\tilde{\beta} = \tilde{\beta}_1 - j\tilde{\beta}_2$ ($\tilde{\beta}_1$ – коэффициент замедления, $\tilde{\beta}_2$ – нормированный коэффициент затухания):

$$\widetilde{\beta}_{1} = \sqrt{\frac{1}{2} \left\{ \sqrt{T_{1}^{2} + T_{2}^{2}} + T_{1} \right\}},$$

$$\widetilde{\beta}_{2} = T_{2} / 2 \widetilde{\beta}_{1},$$
(16)

где

$$T_{1} = 1 + \frac{\left(y_{2}^{2} - y_{1}^{2}\right)}{\left(2\pi a/\lambda\right)^{2}},$$

$$T_{1} = 1 + \frac{\left(y_{2}^{2} - y_{1}^{2}\right)}{\left(2\pi a/\lambda\right)^{2}}.$$
(17)

В табл. 1 и на рис. 1 и рис. 2 приведены результаты расчетов по данной методике комплексных поперечных волновых чисел $x = x_1 + jx_2$, $y = y_1 + jy_2$, коэффициента замедления $\tilde{\beta}_1$, нормированного коэффициента затухания $\tilde{\beta}_2$ и коэффициента затухания β_2 волны E_{00} в медном проводнике при различных значениях радиуса в диапазоне квазиоптических частот ($f = (30 \div 100)$ ТГц).

Таблица 1

Значения $x_1, x_2, y_1, y_2, \tilde{\beta}_1, \tilde{\beta}_2, \beta_2$ для $\sigma_{M1} = 5,7 \cdot 10^{+7} (Om \cdot m)^{-1};$ $\mu_{r1} = 1; \epsilon_{r1} = 1$ (медный провод)

<i>f</i> , ТГц	<i>x</i> ₁	<i>x</i> ₂	<i>Y</i> ₁	<i>y</i> ₂	$\widetilde{\beta}_1$	$\widetilde{\beta}_2$	β2,1/м				
a = 5 MM											
1	2	3	4	5	6	7	8				
30	-4,1082E+05	4,1082E+05	12,02	12,50	1 + 5,96E-7	1,52E-05	9,57				
35	-4,4373E+05	4,4373E+05	15,15	15,63	1 + 5,53E-7	1,76E-05	12,92				
40	-4,7437E+05	4,7437E+05	18,50	18,99	1 + 5,19E-7	2,00E-05	16,77				
45	-5,0315E+05	5,0315E+05	22,07	22,56	1 + 4,90E-7	2,24E-05	21,14				
50	-5,3036E+05	5,3036E+05	25,85	26,34	1 + 4,65E-7	2,48E-05	26,01				
55	-5,5625E+05	5,5625E+05	29,82	30,31	1 + 4,43E-7	2,73E-05	31,39				
60	-5,8098E+05	5,8098E+05	33,98	34,47	1 + 4,24E-7	2,97E-05	37,28				
65	-6,0471E+05	6,0471E+05	38,32	38,80	1 + 4,07E-7	3,21E-05	43,69				
70	-6,2753E+05	6,2753E+05	42,82	43,31	1 + 3,92E-7	3,45E-05	50,60				
75	-6,4956E+05	6,4956E+05	47,49	47,98	1 + 3,78E-7	3,69E-05	58,02				
80	-6,7086E+05	6,7086E+05	52,32	52,80	1 + 3,66E-7	3,94E-05	65,95				
85	-6,9151E+05	6,9151E+05	57,30	57,78	1 + 3,54E-7	4,18E-05	74,39				
90	-7,1156E+05	7,1156E+05	62,42	62,91	1 + 3,43E-7	4,42E-05	83,34				
95	-7,3105E+05	7,3105E+05	67,70	68,18	1+3,33E-7	4,66E-05	92,80				
100	-7,5004E+05	7,5004E+05	73,11	73,59	1 + 3,24E-7	4,91E-05	102,76				

		Окончиние тиол. 1									
1	2	3	4	5	6	7	8				
30	-8,2163E+05	8,2163E+05	24,03	24,52	1 + 3,00E-7	1,49E-05	9,38				
35	-8,8747E+05	8,8747E+05	30,28	30,77	1 + 2,78E-7	1,73E-05	12,71				
40	-9,4874E+05	9,4874E+05	36,99	37,48	1 + 2,60E-7	1,98E-05	16,55				
45	-1,0063E+06	1,0063E+06	44,14	44,63	1 + 2,45E-7	2,22E-05	20,90				
50	-1,0607E+06	1,0607E+06	51,70	52,19	1 + 2,32E-7	2,46E-05	25,76				
55	-1,1125E+06	1,1125E+06	59,64	60,13	1 + 2,21E-7	2,70E-05	31,13				
60	-1,1620E+06	1,1620E+06	67,96	68,45	1 + 2,11E-7	2,95E-05	37,01				
65	-1,2094E+06	1,2094E+06	76,63	77,11	1 + 2,03E-7	3,19E-05	43,40				
70	-1,2551E+06	1,2551E+06	85,64	86,12	1 + 1,95E-7	3,43E-05	50,30				
75	-1,2991E+06	1,2991E+06	94,97	95,46	1 + 1,87E-7	3,67E-05	57,71				
80	-1,3417E+06	1,3417E+06	104,63	105,11	1 + 1,81E-7	3,92E-05	65,63				
85	-1,3830E+06	1,3830E+06	114,59	115,07	1 + 1,74E-7	4,16E-05	74,06				
90	-1,4231E+06	1,4231E+06	124,85	125,32	1 + 1,69E-7	4,40E-05	83,00				
95	-1,4621E+06	1,4621E+06	135,39	135,87	1 + 1,63E-7	4,65E-05	92,45				
100	-1,5001E+06	1,5001E+06	146,22	146,69	1 + 1,58E-7	4,89E-05	102,42				
a = 15 MM											
30	-1.2324E+06	1.2324E+06	36.04	36.53	1 + 2.01E-7	1.48E-05	9.31				
35	-1.3312E+06	1.3312E+06	45.42	45.91	1 + 1.86E-7	1.72E-05	12.64				
40	-1,4231E+06	1,4231E+06	55,49	55,98	1 + 1,74E-7	1,97E-05	16,48				
45	-1,5094E+06	1,5094E+06	66,21	66,70	1 + 1,63E-7	2,21E-05	20,82				
50	-1,5911E+06	1,5911E+06	77,54	78,03	1 + 1,55E-7	2,45E-05	25,68				
55	-1.6687E+06	1.6687E+06	89.46	89.95	1 + 1.47E-7	2.70E-05	31.05				
60	-1,7429E+06	1,7429E+06	101.93	102,42	1 + 1,40E-7	2,94E-05	36,92				
65	-1.8141E+06	1.8141E+06	114.94	115.42	1 + 1.34E-7	3.18E-05	43.31				
70	-1,8826E+06	1,8826E+06	128,45	128,93	1 + 1,28E-7	3,42E-05	50,21				
75	-1,9487E+06	1,9487E+06	142,46	142,94	1 + 1,23E-7	3,67E-05	57,61				
80	-2,0126E+06	2,0126E+06	156,94	157,41	1 + 1,19E-7	3,91E-05	65,53				
85	-2,0745E+06	2,0745E+06	171,88	172,35	1 + 1,14E-7	4,15E-05	73,96				
90	-2,1347E+06	2,1347E+06	187,27	187,73	1 + 1,10E-7	4,40E-05	82,89				
95	-2,1932E+06	2,1932E+06	203,09	203,55	1 + 1,06E-7	4,64E-05	92,34				
100	-2,2501E+06	2,2501E+06	219,33	219,79	1 + 1,03E-7	4,88E-05	102,30				
		· · ·	<i>a</i> =	50 мм	,		,				
30	-4,1082E+06	4,1082E+06	120,13	120,62	1 + 6,00E-8	1,47E-05	9,22				
35	-4,4373E+06	4,4373E+06	151,38	151,86	1 + 5,52E-8	1,71E-05	12,54				
40	-4,7437E+06	4,7437E+06	184,95	185,43	1 + 5,13E-8	1,95E-05	16,37				
45	-5,0315E+06	5,0315E+06	220,69	221,17	1 + 4,79E-8	2,20E-05	20,72				
50	-5,3036E+06	5,3036E+06	258,47	258,95	1 + 4,50E-8	2,44E-05	25,57				
55	-5,5625E+06	5,5625E+06	298,20	298,67	1 + 4,24E-8	2,68E-05	30,93				
60	-5,8098E+06	5,8098E+06	339,78	340,24	1 + 4,00E-8	2,93E-05	36,80				
65	-6,0471E+06	6,0471E+06	383,12	383,57	1 + 3,78E-8	3,17E-05	43,18				
70	-6,2753E+06	6,2753E+06	428,17	428,61	1 + 3,57E-8	3,42E-05	50,07				
75	-6,4956E+06	6,4956E+06	474,86	475,29	1 + 3,38E-8	3,66E-05	57,47				
80	-6,7086E+06	6,7086E+06	523,13	523,55	1 + 3,19E-8	3,90E-05	65,38				
85	-6,9151E+06	6,9151E+06	572,93	573,34	1 + 3,01E-8	4,15E-05	73,81				
90	-7,1156E+06	7,1156E+06	624,23	624,62	1 + 2,84E-8	4,39E-05	82,74				
95	-7,3105E+06	7,3105E+06	676,96	677,34	1 + 2,67E-8	4,63E-05	92,18				
100	-7,5004E+06	7,5004E+06	731,11	731,47	1 + 2,50E-8	4,88E-05	102,14				

Окончание табл. 1

Рис. 1. Зависимость коэффициента замедления от частоты при различных значениях радиуса провода

Как видно из табл. 1, в рассматриваемом диапазоне частот модули поперечных волновых чисел внутри проводника равны ($|x_1| = |x_2|$) и велики. Их порядок составляет $10^5 \div 10^6$. Величины $|x_1|$ и $|x_2|$ тем больше, чем больше радиус провода, и в диапазоне частот монотонно увеличиваются с ростом частоты.

Величины поперечных волновых числе вне проводника также велики $(y_1 >> 1, y_2 >> 1)$, но их порядок меньше и составляет $10^1 \div 10^2$. В рассматриваемом диапазоне частот $(f = (30 \div 100) \text{ TГц})$ величины y_1 и y_2 также возрастают с ростом частоты, но более резко, чем $|x_1|$ и $|x_2|$.

Анализ численных данных y_1 , y_2 , приведенных в табл. 1 для различных значений радиуса проводника и частоты, приводит к приближенным прямым формулам для y_1 и y_2 :

$$y_{1} \approx \frac{\frac{a}{\delta} (\tilde{\sigma}_{M1} + \varepsilon_{r1})}{\left(\tilde{\sigma}_{M1}^{2} + \varepsilon_{r1}^{2}\right)},$$

$$y_{2} \approx \frac{\frac{a}{\delta} (\tilde{\sigma}_{M1} - \varepsilon_{r1})}{\left(\tilde{\sigma}_{M1}^{2} + \varepsilon_{r1}^{2}\right)} + \frac{1}{2},$$
(18)

где $a/\delta >>1$. Например, при a = 10 мм; $\sigma_{M1} = 5,7 \cdot 10^7 (\text{Ом} \cdot \text{м})^{-1}$; $\varepsilon_{r1} = 1$; $\mu_{r1} = 1$ и f = 30 ТГц из (18) получаем:

$$y_1 \approx 24,025$$
; $y_2 \approx 24,524$.

Эти значения отличаются от аналогичных величин в табл. 1 для a = 10 мм при f = 30 ТГц на 0,02%.

На рис. 1 и рис. 2 приведены результаты расчетов основных характеристик волны E_{00} (коэффициента замедления $\tilde{\beta}_1$ и коэффициента затухания β_2) в однопроводной линии на квазиоптических частотах для различных значения радиуса медного проводника.

Из табл. 1 и рис. 1 видно, что зависимости коэффициента замедления от частоты при всех значениях радиуса проводника представляют собой монотонные кривые. При этом коэффициент замедления незначительно отличается от единицы и с ростом частоты в рассматриваемом диапазоне $30 \text{ T}\Gamma_{\text{U}} < f \leq 100 \text{ T}\Gamma_{\text{U}}$ уменьшается. Во всем рассматриваемом диапазоне частот величина коэффициента замедления и скорость его изменения $d\tilde{\beta}_1/df$ тем меньше, чем больше радиус провода.

Как видно из рис. 2, зависимости коэффициента затухания от частоты при всех значениях радиуса проводника также монотонные, но в отличие от $\tilde{\beta}_1$ влияние радиуса на величину коэффициента затухания β_2 в рассматриваемом диапазоне частот чрезвычайно мало, поэтому кривые $\beta_2(f)$ для значений радиуса a = (5; 10; 15; 50) мм сливаются друг с другом, рис. 2. Малое различие значений коэффициента затухания для различных a можно выявить из табл. 1. При этом наблюдается известная закономерность: чем больше размер проводника (радиус), тем меньше коэффициент затухания в линии.

Таким образом, исследованы основные характеристики (комплексные поперечные волновые числа, коэффициенты замедления и затухания) волны Зоммерфельда (E_{00}) в однопроводной линии на квазиоптических частотах. Установлено, что для медного проводника в диапазоне частот $f = (30 \div 100)$ ТГц радиус провода *а* оказывает заметное влияние на величину коэффициента замедления, но очень малое влияние на значения коэффициента затухания, даже при десятикратном изменении *a*.

Библиографический список

- 1. Об основной электромагнитной волне в однопроводной линии в слабопоглощающей среде / Ю. А. Иларионов и [др.] // Радиотехника и электроника. 2007. Т. 52. №2. С. 152–156.
- 2. Иларионов, Ю. А. Методика исследования волн Зоммерфельда в однопроводных направляющих структурах / Ю. А. Иларионов, А. И. Ермолаев // Антенны. 2007. №11. С. 73–85.
- 3. Иларионов, Ю. А. Ра спределение электромагнитного поля по поперечному сечению для волны *E*₀₀ в однопроводной линии / Ю. А. Иларионов, А. И. Ермолаев // Физика волновых процессов и радиотехнические системы. 2009. Т. 12. №1. С. 27–33.
- Астраханцев, К. Г. Исследование распределения электромагнитного поля волны E₀₀ по поперечному сечению однопроводной линии / К. Г. Астраханцев, А. И. Ермолаев, Ю. А. Иларионов // Антенны. 2011. №1. С. 51–56.
- Иларионов, Ю. А. Волна Зоммерфельда E₀₀ в цилиндрическом проводнике большого радиуса / Ю. А. Иларионов, А. И. Ермолаев, А. В.Кукушкин // Радиотехника и электроника. 2012. Т. 57. С. 413–417.

Дата поступления в редакцию 15.07.2013

M. V. Koltsov, Yu. A. Ilarionov

SOMMERFELD E₀₀ WAVE IN A SINGLE-WIRE LINE ON QUASI-OPTICAL FREQUENCY

Nizhny Novgorod state technical university n.a. R.E. Alexeev

Purpose: The purpose of the article is development of the method for finding a solution to the dispersion equation for E_{00} wave (Sommerfeld wave) in a single-wire line in the frequency range, where the dimensionless transverse phase coefficients are high (|x| >> 1, |y| >> 1).

Design/methodology/approach: The theoretical approach for finding a solution to the exact dispersion equation for E_{00} wave is proposed. It uses the features of behavior of the complex phase coefficients $x = x_1 + jx_2$, $y = y_1 + jy_2$ in the frequency range considered and the approximate expressions for functions of the dispersion equation for high values of arguments.

Findings: The developed method was applied for calculation of basic characteristics of the E_{00} wave in a copper conductor in the quasi-optical frequency range ($f = (30 \div 100)$ THz) for various value of radius of the conductor.

Research limitations/simplifications: In the case of study considered the low bound on the THz-range meets the limitation $|y| \ge 10$. The high bound corresponds the values |y| >> 10 when an appearing dependence of the conductor conductivity on the frequency is possible. Especially it is observed in the light range (hundreds of THz).

Originality/value: The value of the developed method for calculation the basic characteristics of the E_{00} wave in a single-wire line is that the solution to the sophisticated dispersion equation in complex planes of arguments $x = x_1 + jx_2$, $y = y_1 + jy_2$ is reduced to solution for algebraic equation for the auxiliary quantity $q = y_2/y_1$ in the real region $q \ge 0$. The remaining quantities are calculated through q by the analytical formulas.

Key words: method of calculations, Sommerfeld wave, single-wire line, quasi-optical frequency.