# МЕТАЛЛУРГИЯ И МАТЕРИАЛОВЕДЕНИЕ

## УДК: 620.172.21:669.017.16

## С. К. Гребеньков<sup>1</sup>, В. А. Скуднов<sup>2</sup>, А. А. Шацов<sup>1</sup>, Л.М. Клейнер<sup>3</sup>

## ДЕФОРМАЦИОННОЕ УПРОЧЕНИЕ НИЗКОУГЛЕРОДИСТЫХ МАРТЕНСИТНЫХ СТАЛЕЙ СИСТЕМЫ Cr-Mn-Ni-Mo-V-Nb

Пермский национальный исследовательский политехнический университет<sup>1</sup>, Нижегородский государственный технический университет им. Р.Е. Алексеева<sup>2</sup>, ООО "КРАСС", г. Пермь<sup>3</sup>

Исследовано упрочнение низкоуглеродистых мартенситных сталей (HMC), склонных к структурной наследственности. Приведены микро- и тонкая структура термообработанных HMC, характеристики прочности, пластичности и вязкости. Образование и распад аустенита изучены методом дифференциальной сканирующей калориметрии (ДСК). Построены истинные диаграммы и модели деформирования. Рассчитаны численные показатели упрочнения для стадии равномерной и сосредоточенной деформации.

*Ключевые слова*: упрочнение, деформация, низкоуглеродистые мартенситные стали, структура, показатель упрочнения, коэффициент упрочнения, ДСК-кривые.

#### Введение

Низкоуглеродистые мартенситные стали (HMC) [1], обычно содержат менее 0,12 % С, легированы 1-3 % Сг, 1-2 % Мп, 1 % Ni и часто сильными карбидообразующими элементами. Добавки V, Nb и/или Ti способствуют росту отпускоустойчивости и проявлению структурной наследственности [2]. HMC, при равной со среднеуглеродистыми сталями прочности, обладают вдвое более высокими характеристиками надежности [3].

Важной характеристикой стали являются параметры деформационного упрочнения. Оценить упрочнение материала на стадии равномерной деформации позволяет показатель деформационного упрочнения *n* уравнения Людвика-Холломона (1) [4]:

$$\sigma_W = K_L e^n,\tag{1}$$

где  $\sigma_W$  – истинное напряжение, МПа;  $K_L$  – коэффициент упрочнения, МПа; e – истинная деформация; n – показатель упрочнения.

Величину показателя упрочнения определяют микромеханизмы деформации и предыдущее упрочнение [5]. Другие важнейшие факторы, влияющие на показатель упрочнения: тип кристаллической решетки, состав, структура, температура, скорость нагружения, размер и морфология характерного элемента структуры – представлены в табл. 1.

Зависимость истинного напряжения от истинной деформации на стадии предразрушения хорошо описывает линейная зависимость (2)

$$\sigma_W = ae + b, \tag{2}$$

где *а* и *b* – коэффициенты линейного уравнения, МПа.

Упрочнение НМС, имеющих, главным образом, реечную структуру, мало изучено [10]. Структура альтернативных низкоуглеродистых кремний-марганцевых сталей (0.15 – 0.25% С), содержащих до 0.5% А1 и другие сильные карбидообразующие элементы,

<sup>©</sup> Гребеньков С. К., Скуднов В. А., Шацов А. А., Клейнер Л.М., 2014.

представляет собой смесь пакетного мартенсита и крупных включений  $\alpha$ -фазы, близких по форме к пластинам [10]. Показатель упрочнения *n* сталей с реечно-пластинчатой структурой [10] составил от 0,10 до 0,13. Существование высокотемпературной  $\alpha$ -фазы, по форме напоминающей пластины, при содержании углерода на уровне 0.38% экспериментально доказано в работе [11].

## Таблица 1

## Сравнительные характеристики упрочнения материалов на стадии равномерной деформации

|                                 |                                            | -    |
|---------------------------------|--------------------------------------------|------|
| Материал                        | Кристаллическая решетка / структура        | n    |
| Сталь 10                        | ОЦК                                        | 0.3  |
| Сплав алюминия Д1               | ГЦК                                        | 0.5  |
| Сплав алюминия A85 (d=50 мкм)   | ГЦК                                        | 0.5  |
| Сплав алюминия A85 (d=0.5 мкм)  | ГЦК                                        | 0.07 |
| Сплав циркония                  | ГПУ                                        | 0.2  |
| Титан ВТ1-00 (d<0.1 мкм)        | ГПУ                                        | 0.06 |
| Сталь 10                        | Феррит                                     | 0.3  |
| Сталь Х70 (12Г2СФТБ)            | Феррит + сорбит                            | 0.2  |
| Сталь 42CrMo4 (40XM)            | Феррит + сорбит                            | 0.1  |
| Сталь X2CrNiMo18.12 (02X18H12M) | Аустенит + мартенсит (деформационное ү – а | 0.36 |
|                                 | превращение)                               |      |

Примечание: скорость деформации в интервале 0.25 – 5 мм/мин.

Для оценки поведения материала в реальных условиях нагружения, с учетом упрочнения, строят истинные диаграммы деформации "напряжение – деформация".

Цель работы: исследование деформационного упрочнения термообработанных НМС системы Cr-Mn-Ni-Mo-V-Nb на стадиях равномерной и сосредоточенной деформаций.

## Методика эксперимента и исследования

Исследовали НМС системы Cr-Mn-Ni-Mo-V-Nb с повышенным содержанием углерода (табл. 2). Образцы для исследований изготовлены из прутка диаметром 110 мм (сталь 15Х2Г2НМФБА), и диаметром 90 мм (сталь 19Х2Г2НМФБА).

## Таблица 2

| Условное обозначение<br>стали | C, % | Si, % | Mn, % | Cr, % | Ni, % | Mo, % | V, % | Nb, % |
|-------------------------------|------|-------|-------|-------|-------|-------|------|-------|
| 15Х2Г2НМФБА                   | 0.15 | 0.26  | 2.07  | 2.10  | 1.23  | 0.42  | 0.09 | 0.063 |
| 19Х2Г2НМФБА                   | 0.19 | 0.21  | 2.02  | 2.16  | 1.22  | 0.41  | 0.09 | 0.056 |

Химический состав исследованных сталей

*Примечание:* содержание Си и Al составляло 0.02-0.05 %, S и P не более 0.025 %, H не более 1,5 ppm, N не более 0.011 %.

Термообработка сталей для проведения механических испытаний: закалка с температуры 980° С, выдержка 1 ч, охлаждение на воздухе и отпуск 250 °С 2 ч. Прутки поставляли в высокоотпущенном состоянии, 650 °С 4 ч.

Микроструктуру выявляли травлением микрошлифа 4%-ным раствором азотной кислоты в этиловом спирте и исследовали на микроскопе Neophot-32 при увеличениях до 2000 крат. Фотографирование структуры производили заменой одного окуляра микроскопа на специальную камеру Levenhuk C800 NG, 8M pixels, USB 2.0. Зеренную структуру изучали на шлифах методом окисления и последующего травления пикриновой кислотой.

Исследования тонкой структуры проводили на специальных фольгах при помощи просвечивающего электронного микроскопа ЭМ-125 (ускоряющее напряжение 100–125 кВ).

Микроскоп оснащен специальной цифровой камерой для вывода на экран монитора и сохранения на внешнем носителе изображения. Дополнительно исследования тонкой структуры проводились на просвечивающем электронном микроскопе JEM 200CX (ускоряющее напряжение до 200 кВ).

Рентгеноструктурный фазовый анализ (РСА) проводили на модернизированном дифрактометре ДРОН-3М при ускоряющем напряжении 30 кВ, силе тока 5 мА, использовали железное Ка излучение.

Температуру фазовых переходов, табл. 3 определяли методом дифференциальной сканирующей калориметрии (ДСК) на приборе STA Jupiter 449 фирмы Netzsch. Нагрев и охлаждение образцов диаметром 4 мм и высотой 3 мм производились в атмосфере аргона со скоростью 10 °/мин.

#### Таблица 3

Таблица 4

#### Температуры фазовых переходов

| Обозначение стали | A <sub>C1</sub> , °C | A <sub>C3</sub> , °C | M <sub>н</sub> , °С | M <sub>к</sub> , °C |
|-------------------|----------------------|----------------------|---------------------|---------------------|
| 15Х2Г2НМФБА       | 720                  | 847                  | 368                 | 306                 |
| 19Х2Г2НМФБА       | 720                  | 844                  | 349                 | 279                 |

Примечание: температура аустенитизации 1000 °С.

Испытания на растяжение проводили в соответствии с ГОСТ 1497-84 на машине Instron 300 LX. Использовали цилиндрические образцы тип III, номер 7. В процессе испытаний разрывная машина, оснащенная ПЭВМ со специальным программным обеспечением BlueHill2, записывает диаграммы деформации и рассчитывает характеристики механических свойств. Ударную вязкость определяли, согласно ГОСТ 9454-78, на маятниковом копре ИО 5003-0,3, образцы типа 11 с V-образным надрезом. Значения КСV, σ<sub>в</sub>, σ<sub>т</sub>, δ, ψ получали как среднее арифметическое по результатам испытаний не менее трех образцов, твердость измеряли по стандартной методике (ГОСТ 9013-59) по шкале HRC на твердомере тип ТК-2М (табл. 4).

| Механические своиства исследованных сталеи |                        |                       |      |      |                         |                  |                  |  |  |
|--------------------------------------------|------------------------|-----------------------|------|------|-------------------------|------------------|------------------|--|--|
| Обозначение стали                          | σ <sub>0.2</sub> , МПа | $\sigma_{\rm B},$ МПа | δ, % | Ψ, % | КСV, Дж/см <sup>2</sup> | HRC <sub>1</sub> | HRC <sub>2</sub> |  |  |
| 15Х2Г2НМФБА                                | 1090                   | 1350                  | 16   | 65   | 95                      | 40               | 23               |  |  |
| 19Х2Г2НМФБА                                | 1150                   | 1440                  | 18   | 61   | 85                      | 41               | 24               |  |  |

<u>.</u>

Примечание: HRC<sub>1</sub> – твердость образцов по шкале Роквелла после закалки и низкого отпуска, HRC<sub>2</sub> – твердость образцов по шкале Роквелла, после закалки и высокого отпуска (состояние поставки).

#### Результаты

Методом РСА установлено, что на дифрактограммах присутствуют только пики, соответствующие α-фазе. Количество остаточного аустенита не превышало погрешности измерений (3 %).

ДСК анализ позволяет получать более точную и полную информацию по сравнению с ранее используемыми методами. Исследованиями установлено двустадийное образование аустенита при нагреве (рис. 1, а, в и рис. 2, а, в). Об этом свидетельствуют немонотонные участки кривой ДСК и ее первой производной.

При охлаждении с температуры аустенитизации 1100°С НМС 19Х2Г2МНФБА существует два пика на кривой ДСК и ее первой производной (рис. 2, г) у стали 15Х2Г2МНФБА локальный экстремум и перегиб кривой. Исходя из данных ДСК, можно предполагать выделение при охлаждении α-фазы двух морфологических типов.









Средний размер зерна для обеих сталей – 17 мкм (рис. 3); в каждом зерне обнаруживали 4–6 пакетов мартенсита (рис. 4, *a*, *б*). Ширина рейки (рис. 4, *в*, *г*) составляет 200–300 нм. Отношение наибольшей и наименьшей полуосей рейки соответствует отношению а:с = от 1:7 до 1:35 [12, 13].



**Рис. 3. Зеренная структура аустенита, х 500:** *a* – HMC 15Х2Г2МНФБА; *δ* – HMC 19Х2Г2МНФБА





в

### Рис. 4. Структура НМС:

*а, б* – микроструктура, х 500; *в, г* – реечная структура, х 30000; *а, в* – НМС 15Х2Г2МНФБА; *б, г* – НМС 19Х2Г2МНФБА *д* – НМС 19Х2Г2МНФБА, глобулярный мартенсит





 Структура обеих сталей – низкоуглеродистый пакетно-реечный и/или реечноглобулярный мартенсит (рис. 4) с соответствующими такой структуре механическими свойствами (табл. 4). Количество глобулярной составляющей не превышало нескольких процентов и возрастало при увеличении температуры закалки примерно до 5 %.

Ранее крупная, напоминающая по форме и размерам зерно высокотемпературная структурная составляющая была идентифицирована в низколегированных сталях с 0,3 % С и названа бесструктурным мартенситом [11].

Таблица 5

| 05                | Равномерная | сдеформация | Сосредоточенная деформация |      |  |
|-------------------|-------------|-------------|----------------------------|------|--|
| Ооозначение стали | $K_L$       | п           | а                          | b    |  |
| 15Х2Г2НМФБА       | 1912        | 0,087       | 926                        | 1362 |  |
| 19Х2Г2НМФБА       | 2045        | 0,089       | 981                        | 1504 |  |

Характеристики деформационного упрочнения исследованных сталей

Общий вид технических и истинных диаграмм "напряжение – деформация" для отпускоустойчивых НМС приведен на рис. 5.



#### Рис. 5. Общий вид кривой растяжения отпускоустойчивых НМС:

ε<sub>0,2</sub> – деформация, соответствующая условному пределу текучести; ε<sub>B</sub> – деформация, соответствующая условному пределу прочности; ε<sub>C</sub> – величина сосредоточенной деформации; ε<sub>F</sub> – полная деформация образца ( предельная деформация до разрушения); σ<sub>0,2</sub> – условный предел текучести, МПа; σ<sub>B</sub> – условный предел прочности, МПа; σ<sub>F</sub> – условный предел прочности при разрушении, МПа; σ<sub>W0,2</sub> – истинная величина напряжений предела текучести, МПа; σ<sub>WB</sub> – истинный предел прочности, МПа; σ<sub>W0,2</sub> – истинное сопротивление разрушению, (истинный предел прочности при разрушении), МПа

Истинную диаграмму на стадии равномерной деформации (рис. 6) аппроксимировали уравнением (1) [4], а на стадии сосредоточенной деформации уравнением (2). Истинные значения напряжений и деформаций на стадии равномерной деформации находили из уравнений (3) и (4), а на участке сосредоточенной деформации – из выражений (5) и (6). Показатели и коэффициенты, аппроксимирующих уравнений, полученных зависимостей приведены в табл. 5.

$$\sigma_W = \sigma(1+\varepsilon)$$
 (3)  $e = \ln(1+\varepsilon)$  (4)

$$\sigma_W = \frac{\sigma}{1 - \psi} \tag{5}$$

$$e = \ln \frac{1}{(1 - \psi)} \tag{6}$$

где σ – технические напряжения, MПа; ε – техническая деформация; ψ – относительное сужение.



**Рис. 6. Истинные диаграммы деформации сталей при растяжении:** *а* – равномерная деформация; *б* – сосредоточенная деформация

Для прогнозирования поведения исследованных сталей при нагружении были вычислены критерии энергоемкости при растяжении, определенные экспериментальным (7) и расчетным (8) методами, критерии зарождения (10) и распространения (11) трещины [14].

$$W_{C \ni \kappa c \pi} = \frac{\sigma_{0,2} + \sigma_B}{2} \ln(\frac{1}{1 - \psi})$$
(7)  $W_{C P a c q} = \frac{\sigma_{0,2} + S_K}{2} \ln(\frac{1}{1 - \psi})$ (8)

$$S_K = \frac{\sigma_{0,2}}{1 - \psi} \tag{9}$$

$$K_{3,T} = \frac{W_C}{\sigma_{0,2}}$$
(10)  $K_{P,T} = 0,75W_C\sigma_{0,2},$  (11)

где  $W_{C \ni kcn}$ ,  $W_{C Pacu}$  – экспериментально определенные и вычисленные критерии энергоемкости при растяжении, МДж/м<sup>3</sup>;  $S_K$  – сопротивление разрушению;  $W_C$  – расчетные или экспериментально определенные значения энергоемкости при растяжении, МДж/м<sup>3</sup>;  $K_{3.T}$ ,  $K_{P.T}$  – критерии зарождения и распространения трещины при растяжении

Значения  $W_{CЭксп}$ ,  $W_{CРасч.}$ ,  $K_{3.T}$ ,  $K_{P.T}$  сведены в табл. 6. Исходя из данных табл. 6 энергоемкость при растяжении НМС 15Х2Г2НМФБА несколько выше, по сравнению с 19Х2Г2НМФБА. Расчетные значения коэффициентов зарождения и распространения трещины во всех случаях выше у НМС 15Х2Г2НМФБА, экспериментальные значения коэффициента распространения трещины практически не отличались.

Таблица б

### Энергия деформирования и критерии зарождения и распространения трещины

|                   | W <sub>C</sub> , МДж/м <sup>3</sup> К <sub>3.Т</sub> К <sub>Р.Т</sub> *10 <sup>-6</sup> |             |             |  |  |  |
|-------------------|-----------------------------------------------------------------------------------------|-------------|-------------|--|--|--|
| Обозначение стали | Эксперимент (Расчет)                                                                    |             |             |  |  |  |
| 15Х2Г2НМФБА       | 1280 (2211)                                                                             | 1,17(2,02)  | 1,05 (1,81) |  |  |  |
| 19Х2Г2НМФБА       | 1221 (1933)                                                                             | 1,06 (1,68) | 1,06 (1,67) |  |  |  |

Таким образом, комплексные энергетические критерии дают новые представления о характере разрушения сталей: чем выше комплексные критерии, тем качественнее сталь, причем о ее работоспособности можно судить как с точки зрения зарождения трещин, так и их распространения: в технологиях обработки давлением важен критерий зарождения трещин, чем он выше, тем выше деформируемость; в эксплуатации изделий, чем выше критерий распространения трещин, тем выше износостойкость. Термическая обработка в зависимости от режима может изменять соотношение критериев между собой, что позволяет обоснованно назначать режим под решаемую задачу.

Сталь 15Х2Г2НМФБА по сравнению со сталью 19Х2Г2НМФБА имеет:

а) более высокую энергоемкость (  $\approx$  на 5 %);

б) более высокие значения критерия зарождения трещин, (  $\approx$  на 5 %);

в) обе стали имеют примерно равные значения критериев распространения трещин;

г) такие выводы о разрушении из сравнения механических свойств сделать невозможно, поскольку они характеризуют исходные дискретные свойства; физический смысл энергоемкости ( $W_C$ , МДж/м<sup>3</sup>) при растяжении качественно коррелирует с величинами ударной вязкости при ударном изгибе (KCU, KCV KCT ,МДж/м<sup>2)</sup>, однако первая величина  $W_C$  отражает истинную работу разрушении структуры в объеме всего очага разрушения, тогда как величины KCU, KCV KCT условны, так как отражают работу разрушения, условно отнесенную в площади 0,8 см<sup>2</sup> исходного образца, а не фактического очага разрушения; при этом не содержит размер глубины зоны пластической деформации при распространении трещины;

д) значения критерия распространения трещин коррелируют со значениями твердости: поскольку твердость сталей одинакова и равна HRC 40-41 ед., то и значения Крт равны. Отсюда следует важный практический вывод: критерий зарождения трещин регламентируется предельной пластичностью – истинным сужением, а критерий распространения трещин твердостью.

В табл. 7 приведены сравнительные характеристики механических свойств и критериев разрушения ряда конструкционных сталей для крепежных изделий, которые позволяют дать более полное обоснование выбора при их применении.

Таблица 7

|             | Характеристики механических свойств и критерии синергетики |                      |                      |      |                                     |                 |                                                                        |  |
|-------------|------------------------------------------------------------|----------------------|----------------------|------|-------------------------------------|-----------------|------------------------------------------------------------------------|--|
| Марка стали | HB                                                         | σ <sub>в</sub> , МПа | σ <sub>т</sub> , МПа | ψ, % | W <sub>c</sub> , МДж/м <sup>3</sup> | К <sub>зт</sub> | К <sub>рт</sub> , (Мдж/м <sup>3</sup> ) <sup>2</sup> *10 <sup>-6</sup> |  |
| 10кп        | 114-143                                                    | 300-320              | 250-260              | 60   | 409                                 | 1,6             | 0,78                                                                   |  |
| 20кп        | 132-163                                                    | 360-380              | 270-280              | 50   | 286                                 | 1,04            | 0,58                                                                   |  |
| 20          | 132-163                                                    | 340-440              | 270-350              | 50   | 322                                 | 1,04            | 0,75                                                                   |  |
| 12XH        | -                                                          | 410-510              | 330-400              | 70   | 939                                 | 2,61            | 2,53                                                                   |  |
| 15ХГНМ      | 217                                                        | <490                 | <390                 | 60   | 625                                 | 1,6             | 1,83                                                                   |  |
| 20Г2Р       | 187-197                                                    | 480-510              | 380-400              | 65   | 727                                 | 1,84            | 2,15                                                                   |  |
| 30Г1P       | 187-197                                                    | 500-520              | 400-420              | 55   | 527                                 | 1,29            | 1,62                                                                   |  |
| 38XA        | 187-207                                                    | <560                 | <450                 | 60   | 722                                 | 1,6             | 2,43                                                                   |  |
| 38ХГНМ      | 169-235                                                    | 560-620              | 450-500              | 50   | 494                                 | 1,04            | 1,76                                                                   |  |
| 40XH2MA     | 269                                                        | <640                 | <510                 | 50   | 530                                 | 1,04            | 2,02                                                                   |  |

Механические свойства и критерии синергетики у сталей (ГОСТ 10702-78)

На рис. 7, *a*, *б* [14] представлены обобщенные зависимости критериев разрушения для всех конструкционных сталей.



Рис. 7. Зависимость критерия зарождения трещин К<sub>3т</sub> от относительного сужения (*a*) и критерия распространения трещин Кр.т от твердости (б)

Представленные критерии физически обоснованы и не противоречат принятым подходам к определению надежности материалов: безотказности, долговечности и др. При этом они адекватно и объективно описывают взаимодействие единого процесса «деформация – разрушение», идущего одновременно от момента приложения нагрузки до разрушения.

#### Выводы

1. Структура закаленных НМС, легированных сильными карбидообразующими элементами – реечный мартенсит. Содержание остаточного аустенита менее 3 %, что соответствует чувствительности использованного дифрактометра.

2. Образование аустенита при нагреве НМС 15Х2Г2НМФБА и 19Х2Г2НМФБА включает две стадии. Превращение начинается сдвиговым путем и завершается диффузионным.

3. При охлаждении HMC со сравнительно высокой температуры аустенитизации в районе температуры 520 °C обнаружено появление высокотемпературной α-фазы – предположительно, глобулярного мартенсита – и расширение интервала мартенситного превращения.

4. Реечная структура низкоуглеродистого мартенсита определяет низкие значения показателя деформационного упрочнения на стадии равномерной деформации и повышенную релаксационную способность HMC. Вычисленные значения характеристик упрочнения на стадии сосредоточенной деформации косвенно подтверждают высокую вязкость разрушения HMC системы Cr-Mn-Ni-Mo-V-Nb.

5. Рассчитанные и определенные экспериментально значения энергии деформирования, критериев зарождения и распространения трещин, которые позволяют комплексно оценить сложный процесс повреждаемости всех конструкционных сталей, на фоне которых показать достоинства новых закаленных низколегированных мартенситных сталей, имеющих высокие характеристики работоспособности изделий после операций отпуска.

#### Библиографический список

- 1. Клейнер, Л. М. Конструкционные высокопрочные низкоуглеродистые стали мартенситного класса / Л. М. Клейнер, А. А. Шацов. Пермь : Изд-во Перм. гос. техн. ун-та, 2008. 303 с.
- 2. Югай, С. С. Структурная наследственность в низкоуглеродистых мартенситных сталях / С. С. Югай, Л. М. Клейнер, А. А. Шацов, Н. Н. Митрохович // Металловедение и термическая обработка металлов. 2004. № 12. С. 24–29.
- 3. Сталь на рубеже столетий / под ред. Ю. С. Карабасова. М. : Изд-во МИСиС, 2001. 664 с.
- 4. Статическая прочность и механика разрушения сталей : сб. науч. тр. : [пер. с нем.] / под ред. В. Даля, В. М. Антона. М. : Металлургия, 1986. 566 с.
- 5. Зуев, Л. Б. Физика макролокализации пластического течения / Л. Б. Зуев, В. И. Данилов, С. А. Баранникова. Новосибирск : Наука, 2008. 327 с.
- Бочкарева, А. В. Локализация пластической деформации и изменение скорости звука в материале с прерывистой текучестью : автореф. дис. ... канд. техн. наук : 01.04.07 / Бочкарева А.В. Новокузнецк, 2009. 18 с.
- Зуев, Л.Б., Данилов В.И. Автоволновая модель деформации и разрушения // VI Российская научно-техническая конференция "Механика микронеоднородных материалов и разрушение". 24.05.2010 – 28.05.2010, г. Екатеринбург. – URL : http://do.gendocs.ru/download/docs-147955/147955.doc.
- 8. **Пшеничников, А. П.** Неустойчивость пластического течения в ГПУ сплавах циркония : автореф. дис. ... канд. техн. наук : 01.04.07 / Пшеничников А.П. Томск, 2010. 18 с.
- 9. Полетика, Т. М. Закономерности потери устойчивости пластического течения в сплаве циркония / Т. М. Полетика, А. П. Пшеничников // Сб. ст. 15-й Зимней школы по механике сплошных сред. – Пермь, 2007. Т. 4. № 3. С. 97–100.
- 10.Ooi, S. W. Carbon enrichment in residual austenite during martensitic transformation / S. W. Ooi, Y. R. Cho, J. K. Oh, H. K. D. H. Bhadeshia // Proceedings of International Conference on Martensitic Transformations (ICOMAT-2008) ; ed. by G. B. Olson, D. S. Lieberman, A. Saxena. – TMS, Pennsylvania, USA, 2009. P. 179–185.
- 11. Козлов, Э. В. Эволюция фазового состава, дефектной структуры, внутренних напряжений и перераспределение углерода при отпуске литой конструкционной стали / Э. В. Козлов [и др.]. Новокузнецк: Изд-во СибГИУ, 2007. 177 с.
- 12. Изотов, В. И. Морфология и кристаллогеометрия реечного мартенсита / В. И. Изотов // Физика металлов и металловедение. 1972. № 1. С. 123–132.

 Структура и свойства перспективных металлических материалов / под ред. А. И. Потекаева. – Томск: Изд-во НТЛ, 2007. – 580 с.

14. Скуднов, В. А. Синергетика явлений и процессов в металловедении, упрочняющих технологиях и разрушении: учеб. пособие / В. А. Скуднов; НГТУ им. Р. Е. Алексеева. – Нижний Новгород, 2011. – 198 с.

Дата поступления в редакцию 10.06.2014

## S. K. Grebenkov<sup>1</sup>, A.A. Shatsov<sup>2</sup>, V.A. Skudnov<sup>1</sup>, L.M. Kleiner<sup>3</sup>

## METAL SCIENCE, HEAT AND PLASTIC TREATMENT OF METALS STRENGTHENING OF LOW CARBON MARTENSITIC STEELS OF SYSTEM Cr-Mn-Ni-Mo-V-Nb

Perm national research polytechnic university<sup>1</sup>, Nizhni Novgorod state technical university n.a. R.Y. Alexeev<sup>2</sup>, OOO «Krass», Perm<sup>3</sup>

Investigated hardening of low-carbon martensitic steels are prone to structural heredity. Shown micro and fine structure of heat-treated steels, characteristics of strength and ductility. We construct the true curves of strain – stress diagram of experimental low carbon martensitic steels. Formation and decomposition of austenite were studied by differential scanning calorimetry (DSC). Built true "stress – strain" diagrams and models. Calculated numerical indicators for hardening stage uniform and concentrated deformation.

Key words: hardening, deformation, low-carbon martensitic steel structure component hardening, hardening coefficient, DSC-curves.