ЯДЕРНАЯ ЭНЕРГЕТИКА И ТЕХНИЧЕСКАЯ ФИЗИКА

УДК 620.179

Д.В. Конурин, А.И. Сиротов

НАТУРНЫЕ ИССЛЕДОВАНИЯ НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ КОРПУСОВ РЕАКТОРНОЙ УСТАНОВКИ БН-800 НА ЭТАПЕ МОНТАЖНЫХ РАБОТ

ОКБМ им. И.И. Африкантова

Представлено краткое описание корпусов реакторной установки БН-800 и перечислено основное оборудование, устанавливаемое на основной корпус реактора. Приведено краткое описание системы высокотемпературной тензотермометрии корпусов реакторной установки БН-800. Представлены основные данные напряженно-деформированного состояния корпусов реакторной установки, полученные в период монтажных работ. Проведен сравнительный анализ результатов, полученных с помощью численного и экспериментального методов. Сделаны выводы по результатам работы.

Ключевые слова: реакторная установка, тензометрия, тензотермосборка, напряженно-деформированное состояние.

Высокая эффективность современных численных методов расчета позволяет решать многие задачи, однако действительные нагрузки, обусловленные сложной геометрией деталей, монтажом оборудования реакторных установок и спецификой их эксплуатации, могут отличаться от теоретически принятых при проектировании [1].

Для определения реальной нагруженности деталей машин большое значение имеют методы экспериментальной механики и, в частности, метод тензотермометрии, который в настоящее время применяется на IV блоке Белоярской АЭС.

Решалась задача исследования прочности основного и страховочного корпусов реакторной установки БН-800 на этапе монтажа основного оборудования. Основной корпус реактора БН-800 представляет собой тонкостенный сосуд (рис. 1), сваренный из листовой стали 10Х18Н9 и состоит:

- из конической крышки с 10 патрубками и верхним фланцем с толщиной стенки 55 мм;
- цилиндрической части с толщиной стенки 30 мм;
- эллиптического днища с толщиной 34 мм;
- опорного кольца и опорной обечайки с толщиной 50 мм.

Вокруг основного корпуса реактора расположен страховочный корпус (рис. 1), сваренный из стали 09Х18Н9, который предназначен для локализации протечек теплоносителя при аварийной разгерметизации корпуса.

Исследование напряженно-деформированного состояния корпусов реакторной установки проводилось в период монтажа следующего оборудования:

- главных циркуляционных насосов первого контура;
- промежуточных теплообменников первого контура;
- механизмов системы перегрузки;
- механизмов системы управления и защиты (СУЗ);
- тепловыделяющих сборок (ТВС) и другого оборудования первого контура.

[©] Конурин Д.В., Сиротов А.И., 2014.

Рис. 1. Конструктивная схема основного и страховочного корпусов реактора БН-800

Для определения реальной нагруженности основного и страховочного корпусов реакторной установки БН-800 была разработана система высокотемпературной тензометрии и термометрии (CBT).

СВТ предназначена:

- для получения информации о напряженно-деформированном и температурном состоянии металла основного и страховочного корпусов реактора;
- верификации на основании полученной экспериментальной информации результатов прочностных расчетов.
 В состав СВТ входят:
- В состав СВТ входят.
- тензотермосборки (рис. 2);
- защитные чехлы для каждой тензотермосборки (рис. 3);

- кабельные линии;
- цифровые измерительные усилители MGCplus;
- сервер сбора, хранения и распределения данных измерений на базе персонального компьютера;
- рабочая станция персональный компьютер;
- линии связи.

Рис. 2. Тензотермосборка СВТ

Рис. 3. Защитные чехлы СВТ

Рис. 4. Распределение напряжений по Мизесу в корпусе реактора σ , Па. Режим гидравлических и пневматических испытаний (давление P = 0,12 МПа)

Схема размещения тензотермосборок СВТ была разработана на основе анализа расчетных данных полей деформаций и температур (рис. 4). В результате были определены зоны с максимальным напряженно-деформированным состоянием. К таким зонам относятся:

а) сечения по осям патрубков главного циркуляционного насоса первого контура (рис. 5), патрубков промежуточного теплообменника, патрубка элеваторов (рис. 6);

б) район уровня теплоносителя трассы охлаждения корпуса – данное место характеризуется наличием зоны большого температурного градиента на конусной крыше основного корпуса в зоне раздела «газ – теплоноситель» и пульсации температуры вследствие колебаний уровня теплоносителя в трассе охлаждения корпуса.

(B11)

(B10)

(B9`

B – B

B7

B6

B5

B4

B3

B2

B1

Рис. 5. Схема расположения тензотермосборок по сечению патрубка главного циркуляционного насоса первого контура Рис. 6. Схема расположения тензотермосборок по сечению патрубка элеваторов (В-В) и промежуточного теплообменника первого контура (Г-Г)

На этапе монтажа основного оборудования первого контура реакторной установки БН-800 величины деформаций записывались в автоматизированном режиме. На данном этапе проводились различные испытания основного и страховочного корпусов реактора:

- гидравлические испытания на прочность и плотность;
- испытания на плотность;
- испытания на устойчивость.

Газовая полость основного корпуса заполнялась воздухом до максимального давления 0,12±0,005 МПа и страховочного корпуса гелиево-воздушной смесью до максимального давления 0,15±0,0075 МПа. На всех этапах проведения испытаний осуществлялось отслеживание состояния уплотнений, нанося на них пенообразующий состав. В случае появления незначительных течей производилась подтяжка уплотнений и продолжалось заполнение с це-

лью выявления всех неплотностей в уплотнениях. В случае значительных течей осуществлялось снижение давления в корпусе до атмосферного и производилась переупаковка уплотнений. При испытаниях на устойчивость абсолютное давление воздуха в корпусе снижалось до величины 0,05±0,0025 МПа (вакуум) путем отсоса воздуха из корпуса вакуум-насосом. Производилось измерение напряженно-деформированного состояния корпуса с использованием системы CBT.

Был проведен сравнительный анализ результатов численных расчетов и данных, полученных СВТ. Расхождение значений напряжений не превысили 20 % (табл. 1).

Максимальные значения напряжений ~ 200 МПа, зафиксированные в конической части крыши корпуса реактора (рис. 1), возникли от действия весовых нагрузок смонтированного основного оборудования (табл. 2).

Таблица 1

№ тензотермосборки	Численные расчеты,		Данные СВТ,		Расхождение,	
	Давление Р=0,12 МПа		Давление <i>Р</i> =0,12 МПа		%	
	σ_1	σ_2	σ_1	σ_2	σ_1	σ_2
B1	26	14	26	15	0	7
B2	-76	-90	-74	-88	3	2
B3	-65	-106	-64	-105	2	1
B4	-36	-72	-35	-70	3	3
B5	-5	9	-4	10	20	11
B9	119	79	118	75	1	5
B10	24	-8	22	-8	8	0
B11	18	10	18	8	0	20
B42	-69	-84	-67	-80	3	5
B43	-60	-100	-63	-96	6	4
B44	-35	-69	-33	-65	6	6
B45	-13	0	-11	0	14	0
B50	17	-16	16	-16	6	0
B51	19	10	18	9	5	10
B52	8	-1	9	-1	13	0

Результаты характерных точек контроля расчетного и экспериментального методов

Таблица 2

Максимальные напряжения после монтажа оборудования

N₂	Напряжения, МПа		
тензотермосборки	σ	σ ₂	
B10	176	35,4	
B11	-91,8	-209	
B27	200	-58,9	
B50	-42,0	-220	
B51	-94,7	-261	
B52	-107	-229	

Таким образом, при монтаже оборудования на основной корпус реактора, с помощью СВТ была получена принципиально важная информация о напряженно-деформированном состоянии корпусов реакторной установки БН-800.

Сравнительный анализ результатов численных расчетов и данных СВТ показал их удовлетворительную корреляцию. Полученная информация подтверждает правильность

выбора расчетных моделей и является верификацией прочностных расчетов. Фактические данные по напряженно-деформированному состоянию позволят провести достоверный уточненный расчет ресурса корпусов реакторной установки БН-800.

1. Дайчик, М.Л. Методы и средства натурной тензометрии: справочник / М.Л. Дайчик, Н.И. Пригоровский, Г.Х. Хуршудов. – М.: Машиностроение, 1989. – 240 с.

Дата поступления в редакцию 08.10.2014

D.V. Konurin, A.I. Sirotov

INVESTIGATIONS OF STRESS-STRAIN STATE CASES OF BN-800 DURING CONSTRUCTION WORKS

OKBM Afrikantov, Nizhny Novgorod

The article presents a brief description of the cases of reactor plant BN-800 and listed to the main equipment installed on the basic case of reactor plant. The article gives a brief description of the system of high-tensor thermometry cases of reactor plant BN-800. The basic data of the stress-strain state of cases of reactor plant BN-800 obtained during construction work of reactor plant BN-800. A comparative analysis of the results obtained by numerical and experimental methods. Conclusions on the results of work.

Key words: reactor plant, strain measurement, stress-strain state.