УДК 621.039.546

С.М. Дмитриев, А.В. Комаров, В.А. Фарафонов

ПРИМЕНЕНИЕ КОЛЬЦЕВЫХ ТЕПЛОВЫДЕЛЯЮЩИХ ЭЛЕМЕНТОВ В РЕАКТОРАХ ВВЭР СО СВЕРХКРИТИЧЕСКИМИ ПАРАМЕТРАМИ

Нижегородский государственный технический университет им. Р.Е. Алексеева

В данной статье приведён теплогидравлический расчёт кольцевого тепловыделяющего элемента при сверхкритических параметрах теплоносителя и сделаны соответствующие выводы об условии работы этих элементов при заданных параметрах.

Ключевые слова: температура, топливо, теплоноситель, оболочка, сердечник.

Введение

В настоящее время реакторы ВВЭР занимают ведущее место в ядерной энергетике и будут сохранять это положение в ближайшие 20 лет. За предшествующие 50 лет создана технология изготовления оборудования и строительства реакторных установок, накоплен значительный опыт эксплуатации. Но к сожалению из-за особенностей физических свойств воды в докритическом состоянии, а именно - слабой зависимости температуры насыщения от давления в интервале свыше 12 МПа - изменения температуры теплоносителя на выходе из реакторов ВВЭР не столь значительны, от 292 до 325°С. Вследствие низкой температуры выхода из реактора КПД установок ограничен ≈ 33% [1].

Наряду с указанным эволюционным путем развития ВВЭР намечается новое научнотехническое направление - разработка корпусных водоохлаждаемых реакторов со сверхкритическим давлением (ВВЭР СКД). Повышение давления до 25 МПа и температуры теплоносителя на выходе из реактора до 540 °С позволяют повысить КПД установок (до 45%) и снизить экологическое воздействие путем уменьшения потерь тепла в термодинамическом цикле от 67 (ВВЭР-1000) до 55% (ВВЭР СКД)[1].

В реакторах ВВЭР-СКД предлагается применить тепловыделяющие элементы (ТВЭЛы) кольцевого типа в которых теплосъём осуществляется как с наружней, так и с внутренней стороны. При использовании кольцевых ТВЭЛов снижается температура топлива и улучшается его теплопроводность, за счет уменьшения толщины топливного слоя [1]. В качестве материала оболочки ТВЭЛА используется нержавеющая сталь X18H10T аустенитного класса [2].

Расчет кольцевого тепловыделяющего элемента реактора ВВЭР-СКД-И

Основная цель теплогидравлического расчёта кольцевого твэл реактора ВВЭР-СКД со сверхкритическими параметрами является определение максимальных температур топливного сердечника и определение условий работы топлива. В качестве прототипа выбрана двухконтурная установка ВВЭР-СКД-И со встроенным парогенератором.

Исходные данные и методика расчета

Все расчетные параметры – тепловые потоки, температуры, параметры теплоносителя – определяются для усредненного по активной зоне и максимально нагруженного тепловыделяющего элемента; последние из таких обозначаются индексом max. Расчет проводится для 9 точек по высоте активной зоны с координатами z = -1,75; -1,50; -1,00; -0,50; 0,00; 0,50; 1,00; 1,50; 1,75 м Результаты расчета сведены в таблицы и представлены графически.

[©] Дмитриев С.М., Комаров А.В., Фарафонов В.А., 2015.

Далее приведены основные характеристики реактора используемые в расчете:

1. Активная зона

<i>H0</i> = 3,5 м
δ=0,08 м
<i>p</i> = 24,5 МПа
$t_{\rm BX} = 390^{\circ}{\rm C}$
$t_{\rm BMX} = 540^{\circ}{\rm C}$
Нержавеющая сталь
Диоксид урана (UO2)
Треугольная
$\kappa = 0,94$
<i>n</i> _{TBC} =163
<i>п</i> _{твэл} =312
$d_2 = 11 \text{ mm}$
$d_1 = 6,5 \text{ mm}$

Таблица 1

Параметры теплоносителя на входе и на выходе активной зоны

Пара	метр	Вход в активную зону	Выход из активной зоны
Температура	t, °C	390	540
Энтальпия	і, кДж/кг	2449	3312
Удельный объем	<i>v</i> , 10 ⁻³ м ³ /кг	5,119	12,741
Плотность	ρ, кг/м ³	195,314	78,488

Теплогидравлический расчет кольцевого ТВЭЛ для реактора ВВЭР-СКД-И[3], [4]

Геометрические характеристики активной зоны ТВЭЛ и ТВС приведены в табл. 2, 3.

Таблица 2 Геометрические характеристики активной зоны

Параметр	Значение
Площадь сечения шестиугольной ячей- ки f_{gy} , M^2	0,04742
Эквивалентный диаметр активно зо- ны D_0 , м	3,138
Высота активной зоны с учетом экстра- полированной добавки <i>H</i> , м	3,66
Объем активной зоны V, M^3	28,29

Таблица З

Парам	етр	Наружная сторона ТВЭЛа	Внутренняя сторона ТВЭЛа				
Диаметр оболочки твэла	$d_{ m of}$, мм	9,6	7,9				
Диаметр топливного сердечника твэла	<i>d</i> _с , мм	9,4	8,1				
Площадь сечения стерж- ней ТВС	$f_{ m ct, } { m m}^2$	0,02168					
Проходное сечение ячейки	$S_{ m ry}$, ${ m m}^2$	0,02574					
Гидравлический Пери- метр ТВС	$\Pi_{\Gamma_{r}} M^{2}$	17,907					
Площадь сечения стерж- ней	$f_{ m ct,}~{ m m}^2$	0,03203					
Проходное сечение теп- лоносителя	$S_{ m rq}$, ${ m m}^2$	0,01539	0,1035				
Гидравлический пери- метр сечения для прохо- да теплоносителя	$\prod_{r, } M$	11,536					
Гидравлический диаметр сечения для прохода теплоносителя	<i>d</i> _{г,} м	0,005335	0,0065				
Гидравлический диаметр ТВС	$d_{ m r,}$ м	0,0)5749				
Тепловой периметр се- чения для прохода теп- лоносителя	П _{т,} м	10,7895	6,371				
Тепловой периметр обо- лочки твэла	$\Pi_{\mathrm{od},}$ m	9,410	7,743				
Тепловой периметр га- зового зазора твэла	П _{3,} м	9,214	7,939				
Тепловой диаметр теп- лоносителя	<i>d</i> _{т,} м	0,0654					

Геометрические характеристики ТВЭЛ и ТВС

Расчет тепловых потоков и параметров теплоносителя по высоте активной зоны

Коэффициент неравномерности энерговыделения по объему активной зоны принят (по стандартному проекту ВВЭР), K_V :

$$K_V = 2,6$$

Коэффициент неравномерности энерговыделения по высоте

$$K_{Z} = \frac{\pi H_{0}}{2H \sin \frac{\pi H_{0}}{2H}} = \frac{\pi \cdot 3,5}{2 \cdot 3,66 \sin \frac{\pi \cdot 3,5}{2 \cdot 3,66}} = 1,51.$$
(1)

Линейный тепловой поток в центральной плоскости реактора приходящийся на одну ТВС: Линейный тепловой поток в центральной плоскости реактора в расчете на средненагруженный твэл $q_{1,0}$, кВт/м

$$q_{l,0} = \frac{Q_{\rm T}}{NH_0} \cdot K_Z = \frac{25000000 \cdot 10^3}{163 \cdot 3.5} \cdot 1.51 = 6617.$$
(2)

Линейный тепловой поток в центральной плоскости реактора в расчете на максимально нагруженный твэл q_{10}^{\max} , кВт/м

$$q_{l,0}^{\max} = \frac{Q_{\rm T}}{NH_0} \cdot K_V = \frac{250000000 \cdot 10^3}{163 \cdot 35} \cdot 26 = 11394.$$
(3)

Расход теплоносителя через активную зону G, кг/с

$$G = \frac{Q}{h_{\text{Bbix}} - h_{\text{Bx}}} = \frac{2500}{3312 - 2449} = 2897.$$
(4)

Средний расход теплоносителя через одну ТВС $G_{TBC}, \kappa_{Z}/c$

$$G_{\rm TBC} = \frac{G_{\rm kop \pi}}{n_{\rm TBC}} = \frac{2897}{163} = 17.775.$$
⁽⁵⁾

Расход теплоносителя в расчете на один твэл $G_{\rm TB}$, кг/с

$$G_{\text{твэл}} = \frac{G_{\text{ТВС}}}{n_{\text{твэл}}} = \frac{17.775}{312} = 0.057 \quad . \tag{6}$$

Значения линейных тепловых потоков в расчетных точках по высоте активной зоны определяются по следующим формулам:

$$q_{l}(z) = q_{l,0} \cos \frac{\pi z}{H}; \ q_{l}^{\max}(z) = q_{l,0}^{\max} \cos \frac{\pi z}{H}.$$
 (7)

Распределение тепловой нагрузки на единицу поверхности твэла:

$$q_{s}(z) = \kappa \cdot \frac{q_{l}(z)}{\pi(d_{1} + d_{2})}; \quad q_{s}^{\max}(z) = \kappa \cdot \frac{q_{l}^{\max}(z)}{\pi(d_{1} + d_{2})}.$$
(8)

В таблице 4 приведены численные значения тепловых потоков, приходящихся на одну ТВС и твэл усреднённые по высоте:

Z, М	-1,75	-1,50	-1,00	-0,50	0,00	0,50	1,00	1,50	1,75
<i>ql</i> , кВт/м	454	1849	4325	6017	6617	6017	4325	1849	454
q_l^{max} , к $ m BT/M$	783	3192	7465	10384	11419	10384	7465	3192	783

Значения тепловых потоков для твэла и тепловыделяющей сборки

Расчет расходов теплоносителя, омывающего наружную и внутреннюю сторону твэла

Так как теплоноситель поступает во внутренний и внешний каналы из общего объёма и выходит в общий объём, то распределение расходов G₁ и G₂ находим из уравнения неравенства перепадов давления:

$$\Delta p_1 = \Delta p_2. \tag{9}$$

Таблица 4

Следует иметь в виду, что перепад давления ΔP в свою очередь зависит от температуры, особенно при значительном подогреве теплоносителя. При использовании водного теплоносителя, подогрев сравнительно невелик, влиянием температуры можно пренебречь, в этом случае:

$$\Delta p = (\xi_{\rm M} + \xi_{\rm Tp} \frac{H_0}{d_{\rm c}}) \cdot \frac{\overline{\rho} \cdot w^2}{2}.$$
(10)

Для приближенных расчётов принимаем $\xi_{\rm TP}$ =0,016.

Коэффициент местного сопротивления для теплоносителя, омывающего наружную строну твэла, складывается из сопротивлений 15 дистанционирующих решёток, коэффициент местного сопротивления которых равен 0,6, поэтому $\xi_{\rm M} = 9$.

Коэффициент местного сопротивления для теплоносителя, омывающего внутреннюю сторону твэла, складывается из сопротивлений на входе во внутренний канал (внезапное сужение) и из сопротивления на выходе из внутреннего канала (внезапное расширение), поэтому $\xi_{m1}=1,5$.

Тогда

$$\Delta p_1 = (\xi_{\rm M} + \xi_{\rm Tp} \frac{H_0}{d_{\rm rl}}) \cdot \frac{\overline{\rho} \cdot w_1^2}{2}, \qquad (11)$$

$$\Delta p_{2} = (\xi_{\rm M} + \xi_{\rm TP} \frac{H_{0}}{d_{\rm r2}}) \cdot \frac{\overline{\rho} \cdot w_{2}^{2}}{2}.$$
(12)

Плотность в этих выражениях ρ =584,954 берётся при средней температуре теплоносителя.

Расходы теплоносителя, охлаждающего внутреннюю и наружную строну твэла, соответственно равны:

$$G_1 = w_1 \cdot \overline{\rho} \cdot S_{\mathcal{A}^{\mathcal{U}_1}},\tag{13}$$

$$G_2 = w_2 \cdot \overline{\rho} \cdot S_{\mathcal{R}^{\prime 2}}.$$
 (14)

Дополнив эти уравнения очевидным неравенством $G=G_1+G_2$, получим систему уравнений, из которой находим

$$G_1 = 8.542 \frac{\mathrm{Kr}}{\mathrm{c}}, \qquad G_2 = 9,233 \frac{\mathrm{Kr}}{\mathrm{c}}, \qquad w_1 = 6,346 \frac{\mathrm{M}}{\mathrm{c}}, \qquad w_2 = 4,782 \frac{\mathrm{M}}{\mathrm{c}}.$$

Расчет среднего коэффициента теплоотдачи

Средние значения коэффициентов теплоотдачи $\alpha(z)$ на участках вокруг расчетных точек могут быть рассчитаны по формулам

$$Nu(z) = A \cdot (Re(z))^{0.8} (Pr(z))^{0.4}.$$

$$Nu(z)^{\max} = A \cdot (Re^{\max}(z))^{0.8} (Pr^{\max}(z))^{0.4}.$$
(15)

где A – коэффициент, зависящий от способа упаковки твэлов в TBC;

Nu(z), Numax(z) – средние на расчетных участках значения чисел Нуссельта;

Re(z), Remax(z) – на расчетных участках средние числа Рейнольдса.

При треугольной упаковке твэлов А рассчитывается по формуле

$$A = 0.0165 + 0.02 \cdot (1 - 0.91\chi - 2) \cdot \chi 0.15 = 0.0278$$
⁽¹⁶⁾

Для чисел Нуссельта и Рейнольдса имеют место соотношения:

$$Nu(z) = \frac{\alpha(z) \cdot d_{z}}{\lambda(z)}; \quad Nu^{\max} = \frac{\alpha^{\max}(z) \cdot d_{r}}{\lambda^{\max}(z)}$$
(17)

$$\operatorname{Re}(z) = \frac{w(z) \cdot d_{r}}{v(z)}; \quad \operatorname{Re}^{\max} = \frac{w^{\max}(z) \cdot d_{r}}{v^{\max}(z)}$$
(18)

$$w(z) = \frac{G_i}{s_{_{\mathfrak{H}^{\mathfrak{q}}}} \cdot \rho(z)}; \quad w^{\max}(z) = \frac{G_i}{s_{_{\mathfrak{H}^{\mathfrak{q}}}} \cdot \rho^{\max}(z)}.$$
 (19)

где w(z) и wmax(z) – скорость теплоносителя в расчетных точках в ячейке со средненагруженным и максимально нагруженным твэлами соответственно.

Значения коэффициентов теплоотдачи, определяемые по формулам:

$$\alpha(z) = \frac{\lambda(z)}{d_{\rm r}} \cdot \operatorname{Nu}(z), \qquad (20)$$

$$\alpha^{\max}(z) = \frac{\lambda^{\max}(z)}{d_r} \cdot \operatorname{Nu}^{\max}(z)$$
(21)

Расчет температурного поля твэлов

На рис. 1 представлен разрез твэла и распределение поля температур в нем

Рис. 1. Распределение температур в кольцевом твэле

Теплоноситель общим расходом G поступает на вход в канал с температурой T_1 , омывает кольцевой твэл как внутри, так и снаружи и на выходе из твэла после смещения имеет температуру T_2 . Поскольку теплоотвод идёт в обе стороны, внутри топливного сердечника устанавливается нейтральная поверхность, представляющая собой для любого сечения окружность радиусом r_0 , на которой температура сердечника T_c максимальна. При этом тепловой поток разделяется на два $q_{U}(x)$ -направленный внутрь и $q_{l2}(x)$ -направленный наружу.

В общем случае нейтральный радиус r_0 зависит от z. На входе в твэл $T_{\tau 1}(x) = T_{\tau 2}(x) = T_I$, соответственно известны теплофизические параметры теплоносителя для этого сечения. По известным данным можно найти в конечном итоге коэффициенты теплоотдачи от стенки к теплоносителю во внутреннем и наружном каналах.

Распределение температуры наружной поверхности оболочки твэла по высоте активной зоны

$$t_{o\delta}^{H}(z) = t_{ri}(z) + \kappa \cdot \frac{q_{li}(z)}{\prod_{ri} \alpha(z) \cdot c_{pi}},$$
(22)

$$\left(t_{obi}^{\rm H}\right)^{\rm max}(z) = t_{\rm Ti}^{\rm max}(z) + \kappa \cdot \frac{q_l^{\rm max}(z)}{\prod_{\rm Ti} \alpha^{\rm max}(z) \cdot c_{pi}^{\rm max}}.$$
 (23)

По среднему значению температуры наружной поверхности оболочки твэла, равному примерно 600°С, из таблиц теплофизических свойств циркония определяем теплопроводность оболочки твэла: λоб = 24,6 Вт/м·К.

Температура внутренней поверхности оболочки твэла

$$t_{\rm ofi}^{\rm \tiny BH}(z) = t_{\rm ofi}^{\rm \tiny H}(z) + \kappa \cdot \frac{q_{li}(z)\delta_{\rm of}}{\Pi_{\rm ofi}\lambda_{\rm of}},$$
(24)

$$\left(t_{o\delta i}^{\text{BH}}\right)^{max}(z) = \left(t_{o\delta i}^{\text{H}}\right)^{\max}(z) + \kappa \cdot \frac{q_{l}^{max}(z)\delta_{o\delta}}{\prod_{o\delta i}\lambda_{o\delta}}.$$
(25)

Коэффициент теплоотдачи (проводимость) контактного слоя для внутренней стороны твэла::

$$\delta_{3a3}/d_{BH1} = 0,0127,$$

 $\alpha_{_{3a31}} = f(\delta_{_{3a3}}/d_{_{BH1}}) = 3.10^3 \text{ BT/(M2·K)}.$

Коэффициент теплоотдачи (проводимость) контактного слоя для наружной стороны твэла:

$$\delta_{3a3/d_{BH2}} = 0.0104,$$

 $\alpha_{_{3a32}} = f(\delta_{_{3a3}}/d_{_{BH2}}) = 2.2 \cdot 10^3 \text{ BT/(M2·K)}.$

Температура наружной поверхности топливного сердечника

$$t_{c}^{H}(z) = t_{ob}^{BH}(z) + \kappa \cdot \frac{q_{l}(z)}{\Pi_{3}\alpha_{3a3}},$$

$$(t_{c}^{H})^{max}(z) = (t_{ob}^{BH})^{max}(z) + \kappa \cdot \frac{q_{l}^{max}(z)}{\Pi_{3}\alpha_{3a3}}.$$
(27)

Для определения температуры внутренней поверхности топливного сердечника в расчетных точках необходимо знать теплопроводность топливного сердечника. Так как теплопроводность диоксида урана обратно пропорциональна температуре топлива, то теплопроводность будем рассчитывать по максимальной температуре, которая устанавливается на нейтральной поверхности, расположенной на радиусе r_0 , так как теплопроводность при этой температуре будет наименьшая.

Теплопроводность топливного сердечника при температуре *tc* рассчитывается по зависимости:

$$\lambda_{\rm c}(t_{\rm c}) = \frac{4 \cdot 10^3}{130 + (t_{\rm c} + 273)} + 3.4 \cdot 10^{-14} \cdot (t_{\rm c} + 273)^4.$$
(28)

Температура топливного сердечника с наружной стороны

$$t_{c2}(z) = t_{c2}^{H}(z) + \kappa \cdot \frac{q_{l2}(z)}{4\pi\lambda_{c}(z)} \cdot \left(1 - \frac{2r_{0}^{2}(z)}{(\frac{d_{2}}{2})^{2} - r_{0}^{2}(z)} \cdot \ln\frac{\frac{d_{2}}{2}}{r_{0}(z)}\right).$$
(29)

Максимальная температура топливного сердечника с наружной стороны:

$$(t_{c2})^{\max}(z) = (t_{c2}^{\mathrm{H}})^{\max}(z) + \kappa \cdot \frac{q_{l2}^{\max}(z)}{4\pi\lambda_c^{\max}(z)} \cdot \left(1 - \frac{2r_{0\max}^2(z)}{(\frac{d_2}{2})^2 - r_{0\max}^2(z)} \cdot \ln\frac{\frac{d_2}{2}}{r_{0\max}(z)}\right).$$
(30)

1

Температура топливного сердечника с внутренней стороны:

$$t_{c1}(z) = t_{c1}^{H}(z) + \kappa \cdot \frac{q_{l1}(z)}{4\pi\lambda_{c}(z)} \cdot \left(\frac{2r_{0}^{2}(z)}{-(\frac{d_{1}}{2})^{2} + r_{0}^{2}(z)} \cdot \ln\frac{r_{0}(z)}{\frac{d_{1}}{2}} - 1\right).$$
(31)

Максимальная температура топливного сердечника с внутренней стороны:

$$(t_{c1})^{\max}(z) = (t_{c1}^{\mathrm{H}})^{\max}(z) + \kappa \cdot \frac{q_{l2}^{\max}(z)}{4\pi\lambda_c^{\max}(z)} \cdot \left(\frac{2r_{0\max}^2(z)}{-(\frac{d_2}{2})^2 + r_{0\max}^2(z)} \cdot \ln\frac{r_{0\max}(z)}{\frac{d_1}{2}}\right).$$
(32)

,

Очевидно, что температура топливного сердечника одна, и не важно с какой строны мы будем её находить, поэтому можно записать очевидное равенство:

$$T_{c1}(z) = T_{c1}(z),$$
 (33)
 $(T_{c1}(z))^{max} = (T_{c2}(z))^{max}.$

Вполне очевидно, что сумма тепловых потоков $q_{ll}(z)$ и $q_{l2}(z)$ равна общему тепловому потоку $q_l(z)$

$$q_{l}(z) = q_{l1}(z) + q_{l2}(z),$$

$$q_{l}(z)_{\max} = q_{l1}(z)_{\max} + q_{l2}(z)_{\max}.$$
(34)

Если предположить, что объёмное тепловыделение по сечению кольцевого твэла постоянно, то получаем:

$$q_{l1}(z) = q_{l}(z) \cdot \left(\frac{r_{0}^{2}(z) - (\frac{d_{1}}{2})^{2}}{(\frac{d_{2}}{2})^{2} - (\frac{d_{1}}{2})^{2}}\right) \qquad q_{l1}^{\max}(z) = q_{l}^{\max}(z) \cdot \left(\frac{r_{0\max}^{2}(z) - (\frac{d_{1}}{2})^{2}}{(\frac{d_{2}}{2})^{2} - (\frac{d_{1}}{2})^{2}}\right) \qquad (35)$$

$$q_{l2}(z) = q_{l}(z) \cdot \left(\frac{-r_{0}^{2}(z) + (\frac{d_{2}}{2})^{2}}{(\frac{d_{2}}{2})^{2} - (\frac{d_{1}}{2})^{2}}\right) \qquad (35)$$

Решая систему уравнений, в конечном итоге находим

mov

 $q_{ll}(z)$ и $q_{l2}(z)$. Далее находим энтальпию теплоносителя в следующей точке по уравнениям

$$h(z) = h_{1_{BX}} + \frac{q_{l,1} \cdot \Delta z}{G_1} \qquad \qquad h(z)^{\max} = h_{1_{BX}}^{\max} + \frac{q_{l1}^{\max} \cdot \Delta z}{G_1} \qquad (36)$$
$$h(z) = h_{2_{BX}} + \frac{q_{l2} \cdot \Delta z}{G_2} \qquad \qquad h(z)^{\max} = h_{2_{BX}}^{\max} + \frac{q_{l2}^{\max} \cdot \Delta z}{G_2}.$$

Полученные значения энтальпий и теплофизические параметры теплоносителя, омывающего внутреннюю стенку твэла, приведены в табл. 5:

Таблица 5

Теплофизические параметры теплоносителя, омывающего внутреннюю стенку твэла

Координата рас- четной точки	Z, M	-1,75	-1,50	-1,00	-0,50	0,00	0,50	1,00	1,50	1,75
	<i>h</i> ₁ , кДж/кг	2449	2476	2599	2771	2960	3131	3255	3308	3315
Энтальния	h_1^{max} , кДж/кг	2449	2540	2753	3050	3372	3668	3880 3971		3982
Температура	$t_{\rm T1}, {}^{\rm o}{\rm C}$	389,8	391,1	399,2	417,7	449,6	489	522,9	538,7	540,6
	$t_{\rm T1}^{\rm max}, {\rm ^oC}$	389,8	394,8	415,3	468,7	558,4	659,2	737,4	771,6	775,8

Координата расчетной точки	Ζ, Μ	-1,75	-1,50	-1,00	-0,50	0,00	0,50	1,00	1,50	1,75
Vлепьный объем	<i>v</i> ₁ , 10 ⁻³ м ³ /кг	5,12	5,316	6,287	7,743	9,449	11,05	12,21	12,7	12,77
5 generation of bein	<i>v</i> ^{max} ,10 ⁻³ м ³ /кг	5,12	5,814	7,585	10,27	13,33	16,01	17,89	18,68	18,78
Плотность	ρ ₁ , кг/м ³	195,3	188,1	159,1	129,1	105,8	90,5	81,9	78,71	78,34
	$ρ_1^{\text{max}}$, κ $Γ/M^3$	195,3	172,1	131,8	97,35	75,21	62,46	55,88	53,53	53,25
Изобарная тепло-	c_{p1} , кДж/кг·К	22,63	19,97	12,21	7,364	4,976	3,891	3,433	3,29	3,275
емкость	<i>с</i> _{<i>p</i>1} ^{max} ,кДж/кгК	22,63	15,15	7,414	4,334	3,151	2,783	2,675	2,649	2,647
Тапнанрараниасти	$\lambda_1, Bт/м \cdot K$	0,2027	0,1921	0,1533	0,1216	0,1044	0,0984	0,0976	0,0980	0,0980
теплопроводноств	$\lambda_1^{\text{max}}, \text{Bt/m}\cdot\text{K}$	0,2027	0,1697	0,124	0,1005	0,0988	0,1068	0,115	0,1192	0,1197
Динамическая	µ ₁ , 10 ⁻⁶ Па∙с	3,036	2,997	2,871	2,818	2,88	3,014	3,142	3,203	3,211
вязкость	$\mu_1^{\text{max}}, 10^{-6} \Pi a \cdot c$	3,036	2,921	2,818	2,942	3,28	3,672	3,967	4,093	4,108
Кинематическая	$v_1, 10^{-6} \text{ m}^2/\text{c}$	1,555	1,593	1,805	2,182	2,721	3,333	3,837	4,07	4,099
вязкость	v_1^{max} , 10 ⁻⁶ m ² /c	1,555	1,698	2,137	3,022	4,362	5,879	7,099	7,647	7,715
Число Пранлтия	Pr_1	3,39	3,117	2,286	1,707	1,372	1,191	1,104	1,075	1,072
тисло прандпля	Pr_1^{\max}	3,39	2,606	1,753	1,269	1,046	0,9572	0,9214	0,91	0,9088

Окончание табл. 5

Полученные значения энтальпий и теплофизические параметры теплоносителя, омывающего наружную стенку твэла, приведены в табл. 6.

Таблица б

Теплофизические параметры теплоносителя, омывающего наружную стенку твэла

Координата рас- четной точки	Ζ, Μ	-1,75	-1,50	-1,00	-0,50	0,00	0,50	1,00	1,50	1,75
Энтальпия	<i>h</i> ₂ , кДж/кг	2449	2501	2620	2727	2970	3137	3257	3308	3315
	h₂ ^{max} ,кДж/г	2449	2538	2745	3034	3351	3640	3847	3936	3947
Температура	$t_{\rm T2}$, °C	389,8	392,4	400,9	419,9	451,8	490,3	523,4	538,6	540,6
reiniepurypu	$t_{\rm T2}^{\rm max}$, °C	389,8	394,7	414,4	465,3	551,9	649,3	725,1	758,3	762,4
V лепьный объем	<i>v</i> ₂ ,10 ⁻³ м ³ /кг	5,12	5,506	6,455	7,88	9,542	11,1	12,22	12,7	12,76
	$v_2^{\text{max}}, 10^{-3} \text{m}^3/\text{kg}$	5,12	5,797	7,519	10,13	13,11	15,76	17,61	18,83	18,47
Плотность	ρ ₂ , кг/м ³	195,3	181,6	154,9	126,9	104,8	90,12	81,81	78,72	78,35
	$\rho_1^{\text{max}}, \kappa \Gamma / M^3$	195,3	172,1	131,8	97,35	75,21	62,46	55,88	53,53	53,25
Изобарная тепло-	<i>с</i> _{<i>p</i>2} , кДж/кг∙К	22,63	17,86	11,41	7,085	4,893	3,868	3,429	3,291	3,275
емкость	с _{р2} ^{тах} ,кДж/кгК	22,63	15,28	7,869	4,428	3,192	2,804	2,687	2,658	2,655

Координата	7 M	-1 75	-1 50	-1.00	-0.50	0.00	0.50	1.00	1 50	1 75
расчетной точки	2, W	1,75	1,50	1,00	0,50	0,00	0,50	1,00	1,50	1,75
Теплопроволность	λ ₂ , Вт/м·К	0,2027	0,1828	0,1484	0,1196	0,1039	0,0985	0,0978	0,098	0,0987
	$\lambda_2^{\text{max}}, \text{Bt/m}\cdot\text{K}$	0,2027	0,1704	0,1251	0,101	0,0981	0,1058	0,1138	0,117	0,1181
Динамическая	µ ₂ , 10 ⁻⁶ Па∙с	3,036	2,965	2,858	2,819	2,886	3,019	3,144	3,203	3,211
вязкость	$\mu_2^{\text{max}}, 10^{-6} \Pi a \cdot c$	3,036	2,923	2,818	2,93	3,255	3,634	3,921	4,044	4,059
Кинематическая	v ₂ , 10 ⁻⁶ м ² /с	1,555	1,632	1,845	2,221	2,754	3,35	3,843	4,069	4,098
вязкость	v_2^{max} , 10 ⁻⁶ m ² /c	1,555	1,694	2,119	2,969	4,267	5,727	6,904	7,433	7,499
Число Пранлтля	Pr_2	3,39	2,895	2,198	1,671	1,359	1,187	1,104	1,076	1,072
I I I I I I I I I I I I I I I I I I I	Pr_2^{\max}	3,39	2,621	1,773	1,285	1,055	0,9632	0,926	0,914	0,9129

Окончание табл. 6

Расчётные скорости теплоносителя, числа Рейнольдса, числа Нуссельта, а также ко-эффициент теплоотдачи занесём в табл. 7.

Таблица 7

Ζ, Μ	-1,75	-1,50	-1,00	-0,50	0,00	0,50	1,00	1,50	1,75
<i>w</i> ₁ , м/с	4,147	4,305	5,090	6,273	7,655	8,949	9,888	10,289	10,3378
w_1^{max} , M/C	4,147	4,706	6,145	8,319	10,768	12,966	14,492	15,1289	15,208
<i>w</i> ₂ , м/с	3,0718	3,304	3,873	4,728	5,724	6,657	7,333	7,621	7,657
w_2^{max} , M/C	3,0718	3,486	4,552	6,163	7,977	9,605	10,736	11,207	11,2663
$Re_1, 10^5$	1,747	1,770	1,847	1,883	1,843	1,759	1,688	1,656	1,652
$Re_1^{\max}, 10^5$	1,747	1,815	1,883	1,803	1,617	1,445	1,337	1,296	1,291
$Re_2, 10^5$	1,053	1,079	1,119	1,135	1,108	1,059	1,017	0,998	0,996
Nu ₁	707,779	691,791	632,232	571,258	514,439	468,318	439,674	428,378	427,083
Nu_1^{\max}	707,779	657,020	577,432	490,054	415,726	366,640	339,453	329,389	328,267
Nu ₂	472,111	451,961	416,757	377,653	341,144	311,744	293,168	285,875	284,904
Nu_2^{\max}	472,111	440,090	389,544	333,207	283,199	250,365	231,990	225,174	224,399
α_1 , к B т/м 2 К	21,903	20,289	14,797	10,605	8,200	7,038	6,558	6,410	6,396
$\alpha_1^{\text{max}}, \kappa \text{Bt/m}^2$ K	21,903	17,022	10,932	7,519	6,272	5,978	5,960	5,994	5,999
α2, кВт/м ² К	17,954	15,501	11,604	8,474	6,650	5,752	5,372	5,257	5,242
α_2^{max} , KBT/M ² K	17,954	14,070	9,143	6,314	5,234	4,970	4,953	4,968	4,972

Сводная таблица

Результаты расчёта температурного поля твэлов в расчётных точках по высоте активной зоны даны в табл. 8.

Ζ, Μ	-1,75	-1,50	-1,00	-0,50	0,00	0,50	1,00	1,50	1,75
<i>q</i> _{<i>l</i>1} , кВт/м	221,5	902,4	2110,6	2935,6	3228,8	2935,6	2110,6	902,4	221,5
<i>q</i> ₁₁ ^{max} , кВт/м	381,5	1553,8	3634,1	5055,3	5559,5	5055,3	3634,1	1553,8	381,5
<i>q</i> _{l2} , кВт/м	232,5	947,0	2214,8	3080,9	3388,2	3080,9	2214,8	947,0	232,5
<i>q</i> ₁₂ ^{max} , кВт/м	402,1	1637,8	3830,6	5328,5	5860,0	5328,5	3830,6	1637,8	402,1
t_{ool} ^H , ^o C	389,800	391,100	399,202	417,706	449,612	489,016	522,914	538,706	540,602
$(t_{ool}^{H})^{max}, {}^{o}C$	389,800	394,801	415,307	468,723	558,442	659,245	737,434	771,614	775,804
t_{002} ^H , ^o C	389,800	392,400	400,901	419,904	451,809	490,312	523,410	538,605	540,601
$(t_{002}^{H})^{max}$, °C	389,800	394,701	414,405	465,317	551,931	649,333	725,125	758,311	762,403
$t_{\rm obl}^{\rm BH}, {}^{\rm o}{\rm C}$	390,566	394,221	406,501	427,858	460,778	499,168	530,213	541,827	541,368
$(t_{ool})^{BH}$ max, °C	390,220	396,509	419,303	474,282	564,555	664,804	741,430	773,323	776,223
t_{002}^{BH} , °C	390,461	395,092	407,197	428,662	461,440	499,070	529,706	541,296	541,262
$(t_{002}^{BH})^{max}, {}^{o}C$	390,943	399,356	425,293	480,463	568,588	664,480	736,013	762,966	763,546
$t_{c1}^{H}, {}^{o}C$	399,342	429,967	490,106	544,142	588,678	615,452	613,819	577,573	550,144
$(t_{c1}^{H})^{max}, {}^{o}C$	405,275	457,834	562,733	673,802	783,975	864,324	884,860	834,648	791,278
t _{c2} ^н , °С	402,973	446,057	526,397	594,476	643,792	664,884	648,906	592,261	553,774
$(t_{c2}^{H})^{max}, {}^{o}C$	409,588	475,303	602,924	727,558	840,328	911,575	913,645	838,914	782,191
$\lambda_c, BT/M \cdot K$	4,969	4,718	4,291	3,980	3,784	3,712	3,784	4,020	4,193
λ_c^{max} , BT/M·K	4,916	4,503	3,848	3,369	3,058	2,922	2,960	3,186	3,367
t _c ^o C	403,204	446,473	532,427	607,409	661,765	683,244	661,597	596,798	554,673
$t_{\rm c}^{\rm max}, {\rm ^oC}$	411.992	487.497	643.505	801.648	938.645	1011.60	989.554	876.258	801.003

Результаты расчёта температурного поля твэлов в расчётных точках

Выводы

1. Температурный уровень теплоносителя и твэлов, а также тепловые нагрузки лежат в пределах допустимых величин. Максимальная температура топливного сердечника твэла в наиболее энергонапряженном твэле не превышает 1011°С; следовательно в реакторе существует запас по температуре топлива. Сравнивая с тем же параметром для стержневого твэла, можно сделать вывод что топливо в кольцевом твэле работает в более благоприятных условиях, что значительно улучшает его свойства.

2. Снижение температуры топлива способствует уменьшению температурных градиентов в топливе и увеличению теплопроводности.

3. Кольцевые твэлы могут быть эффективно использованы в реакторных установках со сверхкритическими параметрами, однако требуется экспериментально проверить корро-

Таблица 8

зионную стойкость данной оболочки при высоких температурах теплоносителя. Также рекомендуется оребрение твэл и-за высоких скоростей на выходе из активной зоны реактора.

Библиографический список

- 1. **Кириллов, П.Л.** Водоохлаждаемые реакторы со сверхкритическими параметрами (ВВЭР-СКД) // Водо-водяные энергетические реакторы сверхкритического давления. 2006. С. 16–27.
- 2. **Герасимов, В.В**. Материалы ядерной техники: учебник для вузов / В.В.Герасимов, А.С. Монахов. 2-е изд., перераб. и доп. М.: Энергоатомиздат, 1982. 288 с.
- 3. **Кириллов, П.Л.** Справочник по теплогидравлическим расчётам / П.Л. Кириллов, Ю.С. Юрьев, В.П. Бобков. М.: Энергоатомиздат, 1990. 360 с.
- 4. Дмитриев, С.М. Краткий курс тепломассообмена: учеб. пособие / С.М. Дмитриев, А.Е. Хробостов; Нижегород. гос. техн. ун-т. Н. Новгород, 2008. –144 с.

Дата поступления в редакцию 29.04.2015

S. M. Dmitriev, A. V. Komarov, V. A. Farafonov

THE USE OF ANNULAR FUEL ELEMENTS IN VVER REACTORS WITH SUPERCRITICAL PARAMETERS

Nizhniy Novgorod state technical university n. a. R.E. Alexeev

Purpose: The main purpose of the thermal-hydraulic calculation of reactors with supercritical parameters is to set the heat flux and temperature on the reactor core, to find the maximum fuel temperature to confirm the impossibility of melting in the fuel elements with high thermal load.

Design/methodology/approach: All the thermal-hydraulic parameters - heat flow, temperature, coolant parameters, hydraulic resistance - are determined for the average over the active zone and the maximally loaded fuel element (cell). The calculation is carried out for 9 points on the core height coordinates z = -1,75; -1.50; -1.00; -0.50; 0.00; 0.50; 1.00; 1.50; 1.75 m. Calculation results are summarized in the table.

Findings: The resulting temperature field of fuel rods suggests that thermal loads are within acceptable limits.

Research limitations/implications: Annular fuel elements can be effectively used in the reactor units with supercritical parameters but require experimental verification of the high corrosion resistance of the membranes at high water temperatures.

Originality/value: The originality of this article is to identify the benefits of the annular fuel rods in VVER reactors with supercritical parameters. Also, the working conditions of these fuel rods are determined for the given parameters.

Key words: temperature, fuel, coolant, shell core.