УДК 621.384.6

М.Б. Гойхман, А.В. Громов, Н.Ф. Ковалев, А.В. Палицин

ИЗМЕРЕНИЕ ЭНЕРГИИ ЭЛЕКТРОНОВ ЗАМАГНИЧЕННОГО РЕЛЯТИВИСТСКОГО ПУЧКА ПО ЦИКЛОТРОННОМУ ПОГЛОЩЕНИЮ ПРОБНОЙ ЭЛЕКТРОМАГНИТНОЙ ВОЛНЫ

Институт прикладной физики РАН, г. Нижний Новгород

Рассмотрена возможность применения явления циклотронного поглощения пробной электромагнитной волны для измерения энергии релятивистских электронов в тонкостенных трубчатых пучках, направляемых продольным однородным магнитным полем. Работоспособность метода была проверена экспериментально.

Ключевые слова: замагниченный релятивистский электронный пучок, циклотронное поглощение, электромагнитная волна, циркулятор, детекторный датчик.

В короткоимпульсных гигаваттных лампах обратной волны (ЛОВ) обычно применяются сильно замагниченные сильноточные электронные пучки, получаемые с холодных взрывоэмиссионных кромочных катодов [1-4]. Качество таких пучков невысокое и для успешного их применения в гигаваттных СВЧ генераторах, в том числе и релятивистских ЛОВ, нужны более детальные сведения об их свойствах. Соответственно, для этого нужны дополнительные средства измерений, более полно учитывающие как побочные факторы, так и специфику применения таких пучков в мощных и, особенно, предельно мощных СВЧ генераторах.

В статье кратко рассмотрен один из дополнительных методов измерения энергии релятивистских электронов в тонкостенных трубчатых пучках, направляемых продольным однородным магнитным полем (\vec{H}) и основанный на явлении циклотронного поглощения [1, 4] пробной электромагнитной волны. Метод не самый точный, но во многом прямой и универсальный, позволяющий к тому же построить простые качественные картины преобразования поступательной энергии электронных пучков в электромагнитное излучение.

В замагниченных электронных пучках, проходящих по вакуумным каналам транспортировки, возможно существование обратных электронно-циклотронных волн с положительной энергией [3, 4]. Их дисперсионные характеристики на плоскости Бриллюэна (ω , h) близки к прямым (рис. 1, a)

$$\omega = h v_z + \omega_{\rm u} \tag{1}$$

даже при больших разбросах по скоростям v_z . В (1): ω - циклическая частота, h - продольное волновое число, v_z - поступательная скорость электронов ($v_z = \vec{v} \vec{z}_0$),

$$\omega_{\rm II} = \frac{eH}{\gamma mc} \,. \tag{2}$$

- циклотронная частота, c - скорость света, m и e - соответственно, масса и заряд электронов (во всех формулах знак заряда учтен явно, т.е. считается e > 0),

$$\gamma = \left[1 - \left(\frac{v_z}{c}\right)^2\right]^{-1/2} - \tag{3}$$

- релятивистский фактор электронов, в котором предполагается, что

 $v_{\perp} \ll |\vec{v}|.$

Обратные циклотронные волны при взаимодействии со встречными электромагнитными волнами образуют полосы запирания $\Delta \omega$ (рис. 1, δ) с центральными частотами ω_0 , определяемыми из условия синхронизма

$$\frac{eH_0}{\gamma mc} = \omega_0 - h(\omega_0)v_Z.$$
⁽⁵⁾

(4)

Таким образом, если в полосе запирания ($\Delta \omega$) выполнено условие (4), то по измерени-

[©] Гойхман М.Б., Громов А.В., Ковалев Н.Ф., Палицин А.В., 2016.

1 и 7 - электронно-циклотронная волна (формула (1)); 2 и 8 - электромагнитная волна; 3 - точка пересечения парциальных волн, соответствующая точному резонансу (формула (5)); 5 - ω₀ из (формулы (5)); 6 - критическая частота волновода рабочего пространства

Работоспособность метода была проверена экспериментально на установке, схема которой приведена на рис. 2. Излучение от магнетрона (обозначен цифрой 1 на рис. 2) по волноводному тракту (обозначен цифрой 5 на рис. 2) с циркулятором (обозначен цифрой 2 на рис. 2), трансформатором волн (обозначен цифрой 6 на рис. 2) и вакуумным окном (обозначен цифрой 7 на рис. 2) подается с коллекторной стороны в круглый волновод, имеющий длину L.

С другой стороны в этот же круглый волновод через коллиматор в виде диафрагмы (обозначен цифрой 11 на рис. 2) подается исследуемый трубчатый электронный пучок (обозначен цифрой 9 на рис. 2), получаемый с кромочного катода (обозначен цифрой 12 на рис. 2). Отрезок (L) круглого волновода, помещенный в соленоид (обозначен цифрой 10 на рис. 2) образует пространство взаимодействия или рабочее пространство (обозначен цифрой 8 на рис. 2) с длиной немного меньшей L. Эксперименты проводились в 3-сантиметровом диапазоне длин волн ($\lambda \cong 3$ см) при величине давления остаточных газов в рабочем пространстве не ниже 10^4 торр. В тестовых экспериментах длину L можно было изменять, но, как правило, L выбиралась столь большой, что линия поглощения принимала "прямоугольный вид", что значительно упрощало определение центральной частоты (ω_0) или резонансного значения магнитного поля (H_0).

В полосе запирания излучение от магнетрона полностью переизлучалось в циклотронную волну, которая, в свою очередь, вместе с электронным пучком полностью поглощалась коллектором.

Если же частота излучения магнетрона была вне полосы запирания ($\Delta \omega$), то пробное

излучение без потерь проходит через рабочее пространство, переотражается диафрагмой (*11* на рис. 2) и затем опять без потерь на переизлучение в циклотронную волну проходит через рабочее пространство и регистрируется СВЧ датчиком (*3* на рис. 2).

Рис. 2. Схема экспериментов:

 1 - магнетронный источник излучения; 2 - циркулятор; 3 - детекторный датчик; 4 - индикатор (осциллограф); 5 - 3-сантиметровый волноводный тракт; 6 - согласующий преобразователь волн;
 7 - вакуумное окно; 8 - рабочее пространство; 9 - трубчатый электронный пучок; 10 - соленоид;
 11 - диафрагма; 12 - кромочный взрывоэмиссионный катод

Рис. 3. Типичная резонансная кривая циклотронного поглощения на плоскости параметров (U, H)

На рис. З показана полученная в эксперименте резонансная зависимость сигнала на выходе детектора U_{micr} от величины направляющего магнитного поля H

$$U_{micr} = U_{micr}(H). (6)$$

На следующем рис. 4 приведена калибровочная кривая

$$H_0 = H_0(U_0), (7)$$

которая к тому же позволяет оценить и точность измерения энергии электронов

$$\gamma_0 = 1 + \frac{eU_0}{mc^2},$$
(8)

и разрешающие способности.

Рис. 4. Калибровочная кривая

Рис. 5. Осциллограммы продетектированных импульсов в разных режимах измерений

Рис. 5. (Окончание). Осциллограммы продетектированных импульсов в разных режимах измерений

На следующих нескольких рисунках (рис. 5, a-e) приведены характерные осциллограммы продетектированных импульсов в различных режимах работы, иллюстрирующие на качественном уровне, возможности рассматриваемого метода. Из представленной серии осциллограмм видно, что метод позволяет исследовать как энергетическую структуру самого импульса, так и отдельно фронта и спада. Метод ценен также и тем, что позволяет оценить величину взаимосвязи электронных волн с электромагнитными волнами и определить время установления полосы запирания.

В заключении следует сказать, что возможности рассмотренного метода (и подобных ему) не исчерпаны и для дальнейшего его развития нужны более детальная теоретическая проработка и более подробные экспериментальные исследования. Причем не только как эффективного диагностического средства, а и как побочного фактора, влияющего на переизлучение волн и их устойчивость, в том числе и образование высокодобротных электронноэлектромагнитных резонансов, подобных брегговским. К этому необходимо добавить, что собранную экспериментальную установку не трудно преобразовать (приспособить) к измерениям линейных и нелинейных коэффициентов взаимной связи электронных и электромагнитных волн, что предполагается обсудить в следующих статьях.

Библиографический список

- 1. Сб. Релятивистская высокочастотная электроника. вып. 1. Горький: ИПФ АН СССР, 1979. 297 с.
- 2. High-Power Microwave Sources and Technologies / Edited by Robert J. Barker, Edl Schamiloglu. New York: IEEE press series on RF and microwave technology, 2001. 485 p.
- 3. Miller, R.B. An Introduction to the Physics of Intense Charged Particle Beams / R.B. Miller. New York: Plenum Press, 1982. 351 p.
- 4. **Кузелев, М.В.** Плазменная релятивистская СВЧ электроника / М.В. Кузелев, А.А. Рухадзе, П.С. Стрелков. М.: Издательство МГТУ им. Н.Э. Баумана, 2002. 544 с.

Дата поступления в редакцию 25.10.2016

M.B. Goykhman, A.V. Gromov, N.F. Kovalev, A.V. Palitsin

THE MEASUREMENT OF ENERGY OF MAGNETIZED RELATIVISTIC ELECTRON BEAMBY CYCLOTRON ABSORPTION OF A PROBE ELECTROMAGNETIC WAVE

Institute of Applied Physics Russian Academy of Science

Purpose: We considered the possibility to use the cyclotron absorption of a probe electromagnetic wave for measurement of energy of relativistic electrons in thin-walled tubular beams, which are guided by longitudinal uniform magnetic field.

Approach: The investigation was considered as analytically as experimentally.

Findings: As a result it is shown that the energy of magnetized relativistic electron beam can be measured by cyclotron absorption of a probe electromagnetic wave. The method was tested in experiment.

Key words: magnetized relativistic electron beam, cyclotron absorption, electromagnetic wave, circulator, detector.