УДК 629.12

П.А. Гринимайер, А.В. Князьков

МОРЕХОДНЫЕ ИСПЫТАНИЯ МОДЕЛИ СПК НОВОГО ТИПА "КОМЕТА 120М"

АО "ЦКБ по СПК им. Р.Е. Алексеева"

Рассматриваются метод испытаний моделей судов на подводных крыльях в условиях волнения, технические характеристики использованного оборудования для испытаний и полученные результаты.

Ключевые слова: судно на подводных крыльях, модель, испытания, мореходность, бесплатформенная инерциальная система.

Наиболее надежный метод определения динамических характеристик судна – пересчет с модели на натуру. Данный метод пересчета является конечным этапом, по которому производится окончательная оценка динамических характеристик судна на подводных крыльях (СПК), на основании которой выбирается силовая установка судна и параметры движителя.

Для получения надежных результатов при пересчете сопротивления на натурные условия необходимо обеспечить условия моделирования, достаточную точность замеров при испытании модели и выбрать правильный метод пересчета результатов испытаний с модели на натуру.

При испытании моделей СПК осуществляют частичное моделирование, определяя скорость движения модели только из условия равенств чисел Фруда у модели и у натуры:

$$Fr_{M} = Fr_{H}. \tag{1}$$

Испытания моделей СПК проводятся в опытовом бассейне и на открытом водоеме. При испытаниях моделей в опытовом бассейне рабочий участок, на котором производятся измерения, ограничен, время наблюдения за поведением модели небольшое, скорость движения модели мала. На открытом водоеме с помощью буксировки специальным скоростным катером можно значительно увеличить масштаб модели, скорость и время наблюдения за моделью в процессе испытаний [1].

Для испытаний моделей на открытой воде используется катер-буксировщик. В качестве буксировщика обычно применяется судно на подводных крыльях или специальный скоростной катер. Модель при буксировке располагается, как правило, сбоку буксировщика.

Мореходные испытания проводятся с целью:

- а) проверки остойчивости в эксплуатационном режиме при попутном волнении h3%=2,0м для натурного судна и совершения в этих условиях поворота с попутного курса на встречный к волне;
- б) проверка остойчивости в переходном и крыльевом режиме движения при всех погодных условиях вплоть до наихудших допускаемых условий;
- в) определение времени перехода модели из водоизмещающего режима в крыльевой режим движения и наоборот при всех допускаемых погодных условиях;
- г) проверка остойчивости в переходном и крыльевом режиме движения при всех допускаемых погодных условиях со статическим моментом на правый борт (Мкр=14 тм для натурного судна);
- д) определения углов крена и дифферента и вертикальных перегрузок модели в переходном и эксплуатационном режимах при всех допускаемых погодных условиях;
 - е) оценка поведения модели в условиях ветрового волнения;
- ж) оценка степени забрызгиваемости и заливаемости корпуса модели при движении в условиях ветрового волнения.

[©] Гринимайер П.А., Князьков А.В., 2017.

Характеристики буксируемой модели представлены в табл. 1.

	Таблица 1
Характеристики буксируемой модели	

Наименование	Значение
Водоизмещение, кг	71,3
Положение ЦМ (от миделя), мм	-147
Положение ЦМ по высоте (от ОП), мм	203
Длина корпуса наибольшая, мм	3495
Ширина корпуса наибольшая, мм	630
Высота корпуса наибольшая, мм	300
Осадка габаритная на плаву, мм	350

Общий вид буксируемой модели представлен на рис. 1.

Рис. 1. Общий вид буксируемой модели

В результате проведения испытаний должны быть получены материалы, позволяющие оценить ходовые качества натурного судна с точки зрения остойчивости при всех допускаемых погодных условиях.

Испытания проводятся при нагрузке масс, соответствующей водоизмещению судна с полным количеством пассажиров и с 10% запасов, как наихудший вариант с точки зрения остойчивости. m = 70.5 т, положение центра масс по длине $X_m=-1.20$ м в корму от миделя (10 теоретического шпангоута), положение центра масс по высоте $Z_m = 1.84$ м от $O\Pi$, по ширине y=0.19 м при скоплении пассажиров на одном борту.

Измеряемые параметры определяются с помощью малогабаритной инерциальной навигационной системы (МИНС) «КомпаНав-2М» (ООО "ТеКнол", г. Москва).

«КомпаНав-2М» измеряет и передает информацию (крен, дифферент, скорость и т.д.) с помощью специального блока радиоканала (Bluetooth) на ноутбук со специальным программным обеспечением, где и происходит регистрация.

Данная измерительная система предназначена для замеров следующих параметров движения буксируемой модели:

- крен;
- тангаж;

- курс;
- скорость движения;
- вертикальная скорость;
- перегрузка в районе центра тяжести;
- угловые скорости по трем осям;
- высота волны с борта катера.

Система состоит из блока микро-электромеханических (MEMS) инерциальных датчиков со встроенным приемником спутниковой навигационной системы (CHC) и подключаемой антенны. Характеристики МИНС "КомпаНав-2М" представлены в табл. 2 [2].

Таблица 2 Характеристики МИНС "КомпаНав-2М"

Наименование параметра	Значение
Габаритные размеры, мм	147×80×58
Масса, кг	0,7
Напряжение питания, В	1227
Потребляемая мощность, Вт	3
Частота обновления информации, Гц	50
Рабочие диапазоны:	
- угловая скорость, °/с	±250
- ускорение, д	±5
- курс, °	±360
- крен, °	±180
- дифферент, °	±90
Погрешности измерения:	
- курс, °	±0,5
- крен, °	$\pm 0,7$
- дифферент, °	$\pm 0,7$

В процессе работы системы приёмник спутниковой навигационной системы осуществляет определение текущих координат местоположения модели. Блок чувствительных элементов определяет параметры углового и линейного движения. Встроенный в блок чувствительных элементов вычислитель осуществляет комплексирование информации от СНС и блока инерциальных датчиков на основе фильтра Кальмана.

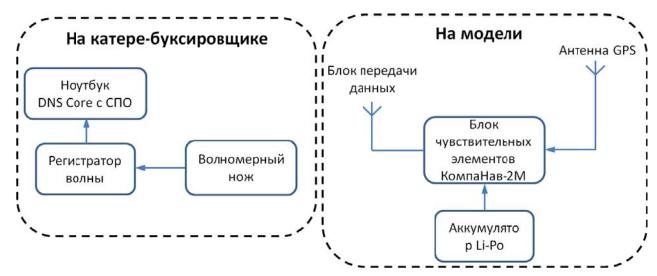


Рис. 2. Схема для измерения характеристик моделей

МИНС "КомпаНав-2М" осуществляет выдачу информации по последовательному протоколу передачи данных RS-232. Выдача информации осуществляется с частотой 50 Гц пакетами данных.

Схема системы для измерения характеристик модели представлена на рис. 2.

Испытания модели проводились в условиях ветрового волнения на различных эксплуатационных режимах и курсовых углах.

Высота волны и период волны замерялись с помощью волномерного ножа, установленного перед форштевнем катера-буксировщика. Установка волномерного ножа непосредственно на катере-буксировщике позволяет определить высоту волны и ее период непосредственно в момент испытаний, что обеспечивает точность замеров. Скорость движения катера – буксировщика определяется по приёмнику GPS. Скорость движения катера в процессе записи волны волномерным ножом должна составлять около 3 м/с. Направление распространения волн определяется визуально или по анеморумбометру, установленному на катере-буксировщике. Волномерный нож представляет устройство для измерения высоты волны состоящее из пластикового ножа и 40 контактами, расположенными через 10 мм. Погрешность измерения высоты волны — 5 мм. В результате движения катера-буксировщика при соприкосновение волномерного ножа с водной поверхностью происходит замыкание контактов. Количество замкнувших контактов передается в блок обработки с частотой 20 Гц. Волномерный нож показан на рис. 3.

Рис. 3. Волномерный нож

На рис. 4 – рис. 7 представлены фотографии модели при движении на различных курсовых углах [3].

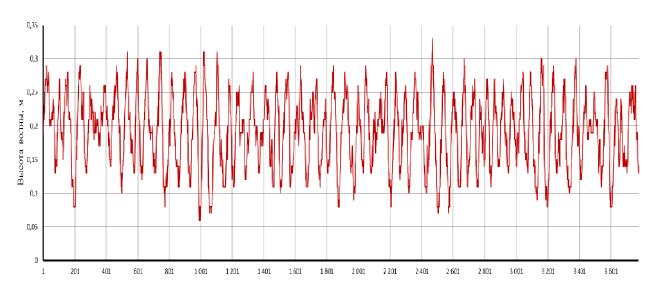
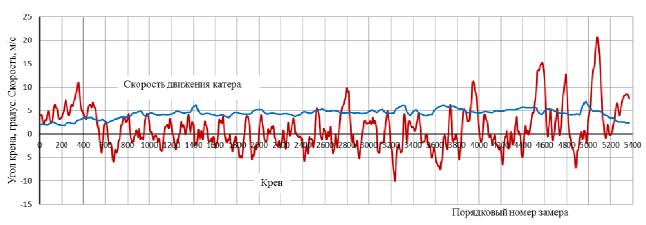
Рис. 4. Движение модели курсом 180° (попутным)

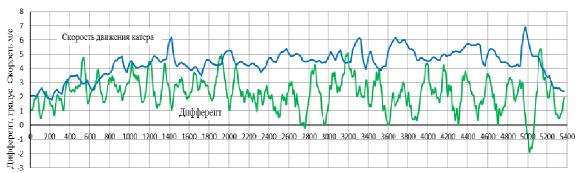
Рис. 5. Движение модели курсом 135°

Рис. 6. Движение модели курсом 45°

Рис. 7. Разворот модели с попутного курса на встречный

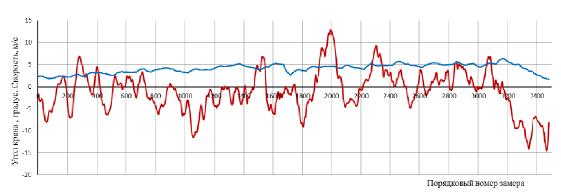
На рис. 8 представлена характеристика волнения на момент испытаний [3].


Рис. 8. Характеристика волнения

Мореходные испытания буксируемой модели показали, что остойчивость модели на волнении $h_{\rm B}3\%$ не менее 200 мм, что соответствует высоте волны $h_{\rm B}3\%=2,0$ м натурного судна, при движении на различных курсовых углах в переходном и эксплуатационных режимах обеспечивается.

20 делений=1 сек


Рис. 9. График изменения угла крена и скорости движения при ходе модели с курсовым угловым $\beta = 90^{\circ}$

Порядковый номер замера

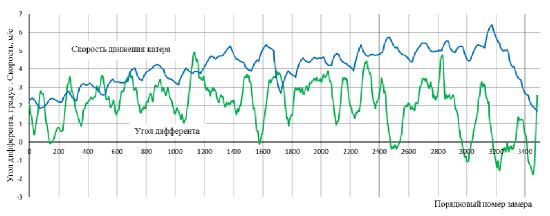

20 делений=1 сек

Рис. 10. График изменения угла дифферента и скорости движения при ходе модели с курсовым углом $\beta = 90^{\circ}$

20 делений=1 сек

Рис. 11. График изменения крена и скорости движения при ходе модели с курсовым углом $\beta = 135^{\circ}$

20 делений=1 сек

Рис. 12. График изменения угла дифферента и скорости движения при ходе модели с курсовым углом β = 135°

Максимальные размахи углов крена от 10° на левый борт и 13° на правый борт наблюдались при курсовых углах $\beta = 90^{\circ}$ и $\beta = 135^{\circ}$. Была проверена остойчивость модели в эксплуатационном режиме при попутном волнении и совершении в этих условиях поворота с попутного курса на встречный к волне. Максимальные размахи углов крена при этом составляли от 12° на левый борт до 10° на правый борт. На рис. 7 – рис. 12 представлены графики зависимостей крена и скорости, дифферента и скорости при ходе модели на курсовых углов $\beta = 90^{\circ}$ и $\beta = 135^{\circ}$.

Испытания со статическим кренящим моментом на правый борт, имитирующим скопление пассажиров на одном борту натурного судна также показали достаточную

остойчивость модели. Максимальные размахи углов крена составили от 1,5° на левый борт до 19° на правый борт и наблюдались при курсовых углах $\beta = 90$ ° и $\beta = 135$ °.

Визуальная оценка поведения модели показала, что корпус модели в условиях волнения и ветра не заливается и степень забрызгивания была незначительной [8].

В заключении можно отметить, что испытание буксируемой модели по методике, описанной в статье, с использованием волномерного ножа непосредственно на катере-буксировщике и использованием современного оборудования для замеров характеристик позволяет достаточно точно замерить гидродинамические характеристики модели, и пересчитать их на натуру без дополнительного и затратного изготовления и испытания самоходной модели.

Библиографический список

- 1. **Зайцев, Н.А.** Отечественные суда на подводных крыльях / Н.А. Зайцев, А.И. Маскалик. 2-е изд. перераб. и доп.: Издательство "Судостроение", 1967. 362 с.
- 2. Малогабаритная интегрированная инерциально-спутниковая навигационная система КомпаНав-2M: Описание системы. M.: ООО "ТеКнол", 2014. 20 с.
- 3. **Панов, А.Ю.** Корабли и суда на подводных крыльях. Пассажирские теплоходы и газотурбоходы ЦКБ по судам на подводных крыльях: монография / А.Ю. Панов. Н. Новгород, 2015. 480 с.
- 4. **Алчуджан, Г.А.** Результаты модельных испытаний морского пассажирского судна на подводных крыльях / Г.А. Алчуджан, В.С. Козырев, О.Г. Шипуков // Мореходные качества судов. Труды Центрального научно-исследовательского института морского флота. Л.: Транспорт, 1973. Вып. 182. С. 92—98.
- 5. Перспективные проекты скоростных судов нового поколения. ОАО «Центральное конструкторское бюро по судам на подводных крыльях им. Р.Е. Алексеева». Нижний Новгород. 30 с.
- 6. Новое поколение морских и речных пассажирских судов на подводных крыльях. Рыбинск Москва, 2014. 23 с.
- 7. Дядюро, Г.А. Опыт применения на СПК автоматических систем управления движением / Г.А. Дядюро, Г.И. Кириллов, А.А. Аширов, М.П. Ярошенко // Тезисы докладов XII научно-технической конференции по проектированию скоростных судов, посвященной 80-летию со дня рождения главного конструктора скоростных судов России, доктора технических наук, лауреата Ленинской и Государственных премий Ростислава Евгеньевича Алексеева. Центральное конструкторское бюро по судам на подводных крыльях им. Р.Е. Алексеева, Волжско-Камское областное правление Всесоюзного НТО СП им. академика А.Н. Крылова. Нижний Новгород: 1997. С. 67–71.
- 8. Отчет по мореходным испытаниям на открытой воде буксируемой модели морского скоростного пассажирского судна на подводных крыльях вместимостью 120 пассажиров. Шифр "Комета 120М", 2015.

Дата поступления в редакиию 06.04.2017

P.A. Grinimayer, A.V. Knyazkov

SEAGOING TEST OF MODEL OF AN INNOVATIVE HYDROFOIL VESSEL "KOMETA 120M"

Alexeev's Central Hydrofoil Design Bureau

Purpose: The far surer method to define the dynamic behavior of hydrofoil vessel is a recount from model to prototype. **Design/methodology/approach:** The article presents towed scale model performance trials methodology with the conversions the dynamic behavior of hydrofoil vessel coefficiency by the condition that the Frode numbers of a model and full-sized vessel are equal.

Findings: Test results provide data to assess the performance of full-sized vessel in terms of stiffness at all allowable weather conditions.

Research limitations/implications: Hydrofoil performance trials.

Originality/value: Under described methodology of using a wave staff on tower in combo with modern equipment for a performance measurement, the tests of towed model provide model's hydrodynamic performance measurement exactly and allow to recount it without producing of self-propelled model and testing it by-passing expensiveness.

Key words: hydrofoil vessel, model, performance trials, seaworthiness, strapdown inertial reference system.