УДК 681.3.513

Е.А. Никулин

КОМПЬЮТЕРНОЕ ИССЛЕДОВАНИЕ БРОУНОВСКОГО ДВИЖЕНИЯ НА ОСНОВЕ СТАТИСТИЧЕСКОГО И ФРАКТАЛЬНОГО АНАЛИЗА

Нижегородский государственный технический университет им. Р.Е. Алексеева

Работа посвящена изучению статистических свойств свободного и закрепленного броуновских движений, а также установлению фрактальных закономерностей случайного броуновского процесса. Впервые введено понятие фрактальной броуновской линии. Метод ее получения – случайное изотропное смещение средних точек отрезков полилинии. Предложен метод оценки размерности неоднородных фрактальных полилиний. Получены статистические свойства и фрактальная размерность случайных броуновских полилиний.

Ключевые слова: броуновское движение, фрактальная броуновская линия, фрактальная размерность.

Введение

Компьютерное моделирование броуновского движения (БД) – хаотического перемещения видимой частицы, возникающего при ее столкновениях с большим числом малых невидимых частиц – реализуется множеством методов [1-4]. Каждый из них в различной степени адекватен данному природному явлению, в действительности происходящему под воздействием большого числа неопределенных факторов: размеров и масс частиц, величин и направлений их скоростей, длин и длительностей свободного пробега, плотности и вязкости среды и т. п. Учет всех этих составляющих в процессе моделирования проблематичен, поэтому неизбежно принятие определенных идеализаций и упрощений, аналогичных замене трассировки всех световых лучей на отслеживание лишь приведенных обратных лучей в расчете освещенности поверхностей [5, 6]:

- использование модельных единиц измерения длины, времени и скорости, мало связанных с метриками реального БД;
- простейшие формы частиц, например, сферы одинакового диаметра либо просто точки;
- случайные или даже равные единице длительности свободного пробега частиц;
- мгновенное изменение скорости либо перемещения частицы после ее столкновения с другой частицей на алгоритмически генерируемую случайную векторную величину;
- равномерное движение частицы с новой скоростью до следующего столкновения.

Свободное броуновское движение

В рамках принятых допущений построим на плоскости стошаговую траекторию *свободного броуновского движения* $p_{i+1} = p_i + V_i \quad \forall i = \overline{0, 99}$ из начального положения $p_0 = O$, где $O = [0 \ 0] -$ нулевой вектор. Для изменения векторов скорости V_i используем функцию $rv(\sigma) = rf(\sigma) \cdot [\sin(\phi) \cos(\phi)]$ генерирования вектора со случайными длиной $rf(\sigma)$ и углом направления $\phi = rnd(2\pi)$ рад, равномерно распределённым по кругу. При задании типа генератора случайных чисел (ГСЧ) с нулевым средним $z = rf(\sigma)$ можно выбрать либо равномерный $z = 2rnd(\sigma) - \sigma$ в интервале $[-\sigma, \sigma]$, либо нормальный ГСЧ с гауссовой плотностью вероятности $e^{-z^2/2\sigma^2}/\sigma\sqrt{2\pi}$ со среднеквадратичным отклонением (СКО) σ .

[©] Никулин Е.А., 2019.

На рис. 1 построены реализации броуновского движения с *равномерным* ГСЧ с параметром $\sigma=1$ двумя методами изменения направления движения частицы после столкновения: (*a*) $V_i = V_{i-1} + rv(\sigma)$ при $V_{-1} = O$ и (*b*) $V_i = rv(\sigma)$. Насколько каждый из этих методов случайного блуждания близок к реальному броуновскому движению – судить тем, кто видел его воочию, возможно, даже в микроскоп.

Изучим статистические свойства процесса со случайными приращениями положений, показанного на рис. 1, б. Каждая *n* -шаговая полилиния $P = p_0 p_1 \dots p_n$ с вершинами $p_i \quad \forall i = \overline{0, n}$ имеет следующие длину γ и квадраты максимального удаления ρ и расстояния χ между начальной и последней вершинами p_0 и p_n :

$$\gamma = \sum_{i=1}^{n} |p_i - p_{i-1}|, \quad \rho = \max_{i} \left(|p_i - p_0|^2 \right), \quad \chi = |p_n - p_0|^2.$$
(1)

Рис. 1. Свободное броуновское движение

Сгенерируем ансамбль из K = 1000 случайных траекторий броуновского движения P_k , $k = \overline{1, K}$, вычислим по (1) значения γ_k , ρ_k , χ_k и рассчитаем средние параметры ансамбля: $\gamma_{cp} = mean(\gamma_k), \ \rho_{cp} = mean(\rho_k), \ \chi_{cp} = mean(\chi_k).$

Соответствующие графики этих зависимостей от числа шагов моделирования i и параметра разброса *равномерного* ГСЧ σ приведены на рис. 1, *в*, *г*. Все они хорошо аппроксимируются следующими функциями:

$$\gamma_{\rm cp}(i) \approx 0.5i, \ \rho_{\rm cp}(i) \approx 0.47i, \ \chi_{\rm cp}(i) \approx 0.33i,$$

$$\gamma_{\rm cp}(\sigma) \approx 50\sigma, \ \rho_{\rm cp}(\sigma) \approx 48.2\sigma^2, \ \chi_{\rm cp}(\sigma) \approx 33.3\sigma^2$$

Аналогичные зависимости при использовании *нормального* ГСЧ с СКО о выглядят следующим образом:

$$\gamma_{\rm cp}(i) \approx 0.8i, \ \rho_{\rm cp}(i) \approx 1.41i, \ \underline{\chi_{\rm cp}(i) \approx i},$$
$$\gamma_{\rm cp}(\sigma) \approx 79.8\sigma, \ \rho_{\rm cp}(\sigma) \approx 142\sigma^2, \ \underline{\chi_{\rm cp}(\sigma) \approx 100\sigma^2}.$$

Особо значимым результатом моделирования является пропорциональность среднего квадрата расстояния $\chi_{cp}(i)$ от начальной до конечной точки броуновской полилинии числу шагов (времени движения при равномерном квантовании времени), экспериментально под-твердившая хорошо известную в молекулярной физике формулу Альберта Эйнштейна.

Фрактальные броуновские линии

Понятие «фрактал» было введено Б. Мандельбротом в 1975 году для преодоления проблемы чрезвычайной громоздкости математического описания бесконечно дробимых объектов уравнениями линий или поверхностей [6]. Наибольшее распространение в компьютерной графике фрактальная тема получила для формирования объектов природного ландшафта. Нерегулярность самоподобия означает, что фрагменты объекта не точно повторяют его форму в уменьшенном масштабе, а имеют некоторые отклонения от регулярности, носящие случайный (стохастический) характер. Случайность доставляет фрактальному объекту неповторимость, живость и близость к реальным природным образованиям, каждый из которых уникален.

Рассмотренная выше броуновская линия в действительности не является фрактальной, так как в методе ее создания отсутствует процесс дробления элементов. Вместе с тем двусторонне закрепленная фрактальная броуновская линия (ФБЛ), проходящая между заданными точками a и b, дает классический пример устройства бесконечно дробимых самоподобных объектов. Для ее построения используется хорошо зарекомендовавший себя рекурсивный *метод срединного смещения* [4], состоящий в *изотропном гауссовом* смещении средних точек дробимых отрезков строящейся полилинии. В плоском варианте задачи изотропность и гауссовость означают следующее (рис. 2):

- случайный угол ϕ отклонения вектора смещения средней точки c = (a+b)/2 отрезка *ab* от вертикали равномерно распределён в интервале $[0, 2\pi)$;
- случайная величина смещения нормально распределена с нулевым средним значением и абсолютным СКО |b-a|σ.

Рис. 2. Метод срединного смещения

Используя предложенную нами ранее методологию [7], для повышения гибкости алгоритма построения ФБЛ введем в список его параметров *признак направления срединного смещения* $D_{\phi} \in \{0,1\}$: при $D_{\phi} = 0$ смещение происходит по вертикали с углом $\phi=0$, тогда как при $D_{\phi}=1$ производится генерирование случайного угла отклонения $\phi=rnd(2\pi)$.

Начальное значение смещения задаётся пропорциональным длине исходного отрезка |b-a|, а на каждой следующей рекурсии параметр σ уменьшается в 2^{*H*} раз, где $H \in [0,1]$ – *показатель Херста*, задающий степень хаотичности ФБЛ и коррелированности смещений. При H=0 неизменное значение σ при уменьшении длин отрезков приводит к максимальной изрезанности ФБЛ.

Рекурсивная функция $FBLrec(L, b, \sigma, \delta, r, D_{\phi}, H)$ построения фрактальной броуновской линии с аргументами L (списком вершин построенной части линии, последняя точка которого a является началом следующего отрезка ab), точкой b, абсолютным СКО σ , минимальной длиной разбиваемого отрезка δ и глубиной рекурсии r работает по следующему алгоритму.

 \square FBLrec $(L,b,\sigma,\delta,r,D_{\phi},H)$ $\{a = L_{size(L)}, V = b - a;$ // начало отрезка и его направление если ${r=0} \setminus {|V| < \delta}$, то // условия остановки разбиения отрезка $\{b \rightarrow L;$ // добавление в список новой точки line(a,b);// вывод отрезка *ab* возврат L }; // выход из рекурсии $\varphi = D_{\varphi} \cdot rnd(2\pi), \ \sigma = \sigma/2^{H};$ // параметры смещения $d = a + 0.5V + rf(\sigma) \cdot [\sin(\phi) \cos(\phi)];$ // смещение средней точки $L = FBLrec(L, d, \sigma, \delta, --r, D_{\omega}, H);$ // разбиение отрезка ad возврат FBLrec $(L, b, \sigma, \delta, r, D_{\phi}, H);$ // разбиение отрезка *db*

Построение ФБЛ на отрезке *ab* осуществляется заданием начального значения погонного СКО σ , соответствующего единице длины отрезка |b-a|, и однократным вычислением списка её вершин $L = FBLrec(a,b,|b-a|\sigma,\delta,r,D_{\phi},H)$. Для создания броуновского фрактала на базовой полилинии $p_1p_2...p_n$ инициализируется начальный список, состоящий из ее первой вершины $L = \{p_1\}$, после чего в цикле:

$$L = FBLrec(L, p_i, |p_i - p_{i-1}|\sigma, \delta, r, D_{\varphi}, H) \forall i = \overline{2, n}$$

к нему подстраиваются сегменты ФБЛ на отрезках $p_{i-1}p_i$.

На рис. 3 показаны четыре группы реализаций алгоритма *FBLrec* на базовом единичном отрезке за r=8 рекурсий при разных значениях параметров σ , $D\phi$ и H. Изучение графиков приводит к следующим выводам:

- при строго вертикальных срединных смещениях (D_φ=0) абсциссы всех точек ΦБЛ изменяются монотонно, что позволяет строить на таких базовых линиях самонепересекающиеся ландшафтные поверхности [4];
- изотропность срединного смещения (D_φ=1) создает на фрактальных линиях хаотически расположенные петли и участки попятного движения – совсем как на реальных траекториях случайного блуждания частиц в молекулярной среде. Однако такое поведение ФБЛ усложняет их использование в качестве базовых линий фрактальных броуновских поверхностей, моделирующих строение поверхности природных ландшафтов, – они получаются чрезвычайно самопересекающимися и комковатыми, в чем мы скоро сможем убедиться;
- влияние показателя Херста 0≤H≤1 на форму фрактальных линий сказывается на относительном содержании в их спектре высокочастотных гармоник (шума) и коррелированности соседних смещений. При малых значениях H≈0 доля шума максимальна, а направления соседних смещений в среднем противоположны. Наоборот, выбор H≈1 позволяет создать ФБЛ с малым уровнем высокочастотных колебаний и сильной коррелированностью соседних смещений.

Важной статистической характеристикой полилинии, отражающей ее непрямолинейность, является коэффициент удлинения – отношение полной длины линии к расстоянию между ее концами:

$$\gamma = \sum_{i=1}^{n-1} \left| p_i - p_{i+1} \right| / \left| p_1 - p_n \right|$$
(2a)

Рис. 3. Фрактальные броуновские линии

Зададим набор СКО $\sigma_j = 0.01 j \quad \forall j = \overline{0, 50}$ и для каждого σ_j сгенерируем ансамбль из K = 100 фрактальных полилиний с вычисленными по (2a) значениями $\gamma_k \quad \forall k = \overline{1, K}$. Рассчитаем среднее значение коэффициента удлинения:

$$\gamma_{\rm cp} = mean(\gamma_k). \tag{26}$$

Наилучшие приближения $\gamma_{cp}(\sigma, H)$, вычисленные в MathCAD методом Левенберга-Марквардта с помощью функции *genfit* на r=8 уровнях рекурсии для выборочных значений H=0.5 и $\sigma=0.3$, имеют следующий вид:

$$\gamma_{\rm cp}(\sigma, 0.5) \approx 1 + 18.3 \sigma^{1.16}, \ \gamma_{\rm cp}(0.3, H) \approx 1 + 69.6 \cdot 2^{-7.8H}.$$
 (2B)

Графики этих зависимостей от параметров σ и *H* при выборочных глубинах рекурсии $r \in \{4,6,8,10\}$ показаны на рис. 4.

Рис. 4. Статистические свойства ФБЛ

Экспериментальная оценка размерности ФБЛ

Броуновская полилиния также является стохастическим линейным фракталом с неоднородными элементами (рис. 3). На рис. 5 построены графики усредненных по K = 100 реализациям функции *FBLrec*($a,b,\sigma,0,r,0,H$) зависимостей их полной длины $\gamma_{cp}(\sigma,H,r)$ и размерности $d_{cp}(\sigma,H,r)$ от числа рекурсий r на наборе СКО $\sigma \in \{0.1,0.2,0.3\}$ нормального ГСЧ $rf(\sigma)$ и от показателя Херста $H \in \{0.1,0.5,0.9\}$. Выбор логарифмического масштаба позволяет обнаружить *предельную* линейную зависимость функции $\log_2(\gamma_{cp})$ от числа итераций и оценить полную длину ФБЛ зависимостью от двух параметров $\alpha(\sigma,H)$ и $\beta(\sigma,H)$:

$$\log_2(\gamma_{\rm cp}) \approx \alpha \left(e^{-\beta r} + \beta r - 1 \right)$$

с нулевыми значением и наклоном при r=0. Прямые измерения по графикам обнаруживают установившиеся значения коэффициентов наклона $\alpha\beta=1-H$.

Таким образом, оценка предельной длины ФБЛ приобретает вид $M_r(\sigma, H) \rightarrow 2^{(1-H)r}$, а ее фрактальная размерность

$$D_r(\sigma,H) = \lim_{r \to \infty} \frac{D_{\mathrm{T}}}{1 - \log_2(M_r/M_{r-1})}$$

сходится к

$$D_r(\sigma,H) \rightarrow \frac{1}{1-(1-H)r+(1-H)(r-1)} = \frac{1}{H} = \text{const } \forall r$$

Это полностью согласуется с размерностью броуновского движения, приведенной в [1] и экспериментально подтверждается графиками на рис. 6, асимптотически сходящимися к пунктирно проведенным уровням 1/H, независимым от значений σ . При этом скорость сходимости сильно замедляется по мере приближения показателя Херста H к 1.

Заключение

Получены усредненные характеристики траекторий броуновского движения, создаваемых с помощью генераторов равномерно и нормально распределенных случайных чисел. На основе этого становится возможным как оценить вид и область расположения полилинии при заданных значениях s, σ и r, так и задать эти параметры сообразно ее желаемому поведению.

Библиографический список

- 1. **Мандельброт, Б.** Фрактальная геометрия природы / Б. Мандельброт. М.: Институт компьютерных исследований, 2002. 656 с.
- 2. **Кроновер, Р.М.** Фракталы и хаос в динамических системах. Основы теории / Р.М. Кроновер. М.: Постмаркет, 2000. 352 с.
- 3. **Федер, Е**. Фракталы / Е. Федер. М.: Мир, 1991. 254 с.
- 4. **Никулин, Е.А.** Компьютерная графика. Фракталы: учеб. пособие для вузов / Е.А. Никулин. СПб.: Издательство «Лань», 2018. 100 с.
- 5. Никулин, Е.А. Компьютерная графика. Оптическая визуализация: учеб. пособие для вузов. Е.А. Никулин. – СПб.: Издательство «Лань», 2018. – 200 с.
- 6. Никулин, Е.А. Компьютерная графика. Модели и алгоритмы: учеб. пособие для вузов / Е.А. Никулин. СПб.: Издательство «Лань», 2017. 708 с.
- 7. **Никулин, Е.**А. Исследование фрактальных полилиний // Труды НГТУ им. Р.Е. Алексеева. 2018. № 3(122). С. 23-31.

Дата поступления в редакцию 11. 01.2019

E.A. Nikulin

COMPUTER INVESTIGATION OF THE BROWN MOVEMENT BY MEANS OF STATISTICAL FRACTAL ANALYSIS

Nizhny Novgorod state technical university n.a. R.E. Alekseev

Purpose: The establishment of statistical regularities of random Brownian motion.
Methodology: Random isotropic displacement of midpoints of polyline segments.
Experiments: A statistical experiment was performed to evaluate the length and dimension of a fractal polyline.
Results: Statistical properties and fractal dimension of random Brownian polylines are obtained.
Findings: A method for estimating the dimension of inhomogeneous fractal polylines is proposed.
Research implications: Computer synthesis of random fractal objects with desired properties.

Key words: Brownian motion, fractal polyline, fractal dimension.

/