УДК 621.039

Ю.И. Аношкин, А.А. Добров, М.А. Легчанов, М.А. Субарев, А.Е. Хробостов

ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ ГИДРАВЛИЧЕСКОГО СОПРОТИВЛЕНИЯ ВСТАВОК ИЗ УПРУГО-ПОРИСТОГО ПРОВОЛОЧНОГО МАТЕРИАЛА В КАНАЛЕ КРУГЛОГО СЕЧЕНИЯ

Нижегородский государственный технический университет им. Р.Е. Алексеева

Одним из вариантов пористых вставок, используемых в каналах в качестве интенсификаторов процессов теплообмена, является упруго-пористый проволочный материал. При этом возникает необходимость корректного определения гидравлических потерь давления на единицу длины пористого элемента, которые зависят от свойств перекачиваемой жидкости, от скорости ее течения и от характеристик пористой структуры.

В работе представлены гидравлические характеристики, полученные при исследовании перепада давления от расхода рабочей среды в трех пористых образцах на исследовательском стенде НГТУ ФТ-18. Данные приведены в безразмерной форме для удобства их использования согласно теории гидродинамического подобия. В качестве определяющего размера использовался средний диаметр пор с учетом поправки на вероятностное распределение пор по размерам, а в качестве характерной скорости выбиралась средняя скорость потока в порах. Получены значения границ диапазонов чисел Рейнольдса, характеризующие возможную смену режимов или характера течения среды.

Ключевые слова: гидродинамика, пористые материалы, коэффициент гидравлического сопротивления.

Введение

Установка элементов из пористых материалов при течении различных сред в каналах является эффективным способом интенсификации теплообмена за счет увеличения площади теплоотводящей поверхности, контактирующей со средой в небольшом объеме. При определенной структуре такие вставки могут выполнить функцию струевыпрямителей и успокоителей потока жидкости для установок, где важно обеспечить равномерный по сечению профиль скорости среды, что обусловлено, например, особенностями технологического процесса в таких установках. При этом возникает необходимость корректного определения гидравлических потерь давления на единицу длины пористого элемента, которые будут зависеть не только от свойств перекачиваемой жидкости и от скорости ее течения, но также и от характеристик пористой структуры.

Одним из вариантов таких пористых вставок, пористость которых можно задавать и контролировать при изготовлении, является сам упруго-пористый проволочный материал, который нашел широкое применение в нефтегазовой и химической промышленности, авиа- и ракетостроении, судостроении, машиностроении [1-5].

Экспериментальный стенд и исследуемые образцы

Экспериментальное изучение гидравлики жидкости при протекании через пористые втулки проводились на исследовательском стенде ФТ-18 НГТУ им. Р.Е. Алексеева. Стенд представляет собой двухконтурную установку с принудительной циркуляцией рабочей среды по обоим контурам. Принципиальная гидравлическая схема стенда приведена на рис. 1. Основные характеристики стенда сведены в табл. 1.

[©] Аношкин Ю.И., Добров А.А., Легчанов М.А., Субарев М.А., Хробостов А.Е., 2019.

Наименование характеристикиЗначение/диапазон значенийРабочая средаводаРасход рабочей среды0,5÷110 л/минМаксимальная температура рабочей среды60 °CМаксимальный перепад давления на рабочем участке100 кПа

Для определения гидравлических потерь в состав стенда входят электромагнитный расходомер (диапазон измерения 0÷125 л/мин, погрешность измерения не более 1% от измеряемой величины) и преобразователь дифференциального давления (диапазон измерения 0÷30 кПа, погрешность измерения ±12 Па).

Рис. 1. Принципиальная гидравлическая схема стенда ФТ-18

Исследовались три образца пористых втулок, изготовленных из упруго-пористого проволочного материала (в основе проволока, навитая в спирали и спрессованная в цилиндрическую форму). Величины пористости трех образцов по результатам измерений готовых изделий составляли соответственно $\Pi_1=0,75\pm0,015$, $\Pi_2=0,74\pm0,015$, $\Pi_3=0,74\pm0,015$, толщины втулок $L_1=28,8\pm0,2$ мм, $L_2=33,1\pm0,2$ мм, $L_3=30,9\pm0,2$ мм. Значение пористости получалось экспериментально-расчетным способом, при этом предполагалось, что исследуемый матери-

Таблица 1

Основные технические характеристики стенда ФТ-18

ал имеет только открытые поры, а его пористость равна объемному водопоглощению. Величины диаметров втулок составляли D_1 =40,4±0,1 мм, D_2 =38,5±0,1 мм и D_3 =38,5±0,1 мм.

Образцы устанавливались в канал круглого сечения и жестко фиксировались. Схема установки втулок в составе экспериментального участка представлена на рис. 2.

Рис. 2. Схема установки исследуемого образца в составе экспериментального участка

При проведении испытаний варьировался расход воды через экспериментальный участок. Фиксировались объемный расход жидкости Q и значения перепада статического давления $\Delta P_{\rm cr}$ при протекании через образец. Также контролировалась температура рабочей среды T. Учитывая, что геометрические характеристики сечений канала до и после исследуемого образца одинаковы, то потери полного давления, характеризующие гидравлическое сопротивление образца, будут равны разнице статического давления между двумя сечениями, показанными на рис. 2. Данные потери обусловлены трением рабочей среды о стенки круглого канала и местным сопротивлением исследуемого образца. В дальнейшем при обработке результатов величиной потерь давления за счет трения в круглом канале пренебрегалось, ввиду ее малого значения по сравнению с потерями, вызванными пористым образцом.

Методика обработки экспериментальных данных

В общем случае потери давления, отнесенные к единице длины (толщины) пористого образца, могут быть записаны в следующем виде:

$$\Delta P/L = f(V_{\text{xap}}, d_{\text{xap}}, \nu) \tag{1}$$

где: $\Delta P/L$ - потери давления, отнесенные к единице длины пористого образца, Па;

 $V_{\rm xap}$ – характерная скорость течения среды, м/с;

*d*_{хар} – характерный размер пористого элемента, м;

 ν - коэффициент кинематической вязкости, м²/с.

По аналогии с течением жидкости в трубах и каналах с помощью методов теории подобия можно получить два безразмерных комплекса, которые характеризуют гидродинамику жидкости в пористой среде [1]:

$$\xi = \frac{2 \cdot \Delta P}{\rho \cdot V_{\rm rop}^2} \cdot \frac{d_{\rm xap}}{L} \tag{2}$$

$$Re = \frac{V_{\text{xap}} \cdot d_{\text{xap}}}{v} \tag{3}$$

 ξ – коэффициент гидравлического трения на единицу толщины пористого слоя; *Re* - число Рейнольдса. В качестве характерной скорости жидкости для пористых материалов выбирается средняя скорость потока в порах. В эксперименте с помощью расходомера измерялось значение объемного расхода жидкости в канале круглого сечения до пористой вставки Q, через который можно определить величину скорости фильтрации V_{ϕ} :

$$V_{\Phi} = \frac{4 \cdot Q}{\pi \cdot D^2} \tag{4}$$

Предполагая, что рассматриваемые изделия имеют структуру близкую к изотропной, можно принять допущение о равенстве просветности и объемной пористости. Тогда средняя скорость потока в порах определится формулой:

$$V_{\rm xap} = \frac{4 \cdot Q}{\pi \cdot D^2} \cdot \frac{1}{\Pi} \tag{5}$$

В работе [2] авторами предложено рассматривать в качестве характерного размера средний размер пор с поправкой на вероятностное распределение пор по размерам:

$$d_{\rm xap} = d_{\rm cp} \cdot (1 + \frac{1}{\alpha}) \tag{6}$$

где $d_{\rm cp}$ - средний размер пор, м;

α – параметр функции распределения.

$$\alpha = \frac{d_{\rm cp}^2}{\sigma^2} \tag{7}$$

где σ^2 - дисперсия размеров пор.

Подробно физический смысл параметра функции распределения а для материала MP описан в [3].

По данным структурных исследований [2-3] было получено выражение для определения среднего размера пор в изделиях из материала МР:

$$d_{\rm cp} = \frac{\Pi \cdot \delta_{\rm np}}{1 - \Pi} \tag{8}$$

Для определения среднего размера пор был сделан продольный разрез тестового образца, изготовленного по той же технологии и из тех же материалов, что и исследуемый образец №1. Далее, с использованием сканера высокого разрешения было получено монохромное изображение сделанного разреза (рис. 3). При этом в плоскости сканирования светлым цветом отразилась металлическая структура, а темным – поровое пространство.

Рис. 3. Цифровой скан продольного разреза исследуемого материала МР

Это изображение анализировалось с использованием CAD программы, где в местах пустот строились окружности, касательные к контурам металла (рис. 4).

Рис. 4. Описание пустот в сечении с помощью окружностей в САD программе

Затем файл в открытом текстовом формате IGES, содержащий информацию о диаметрах построенных окружностей, анализировался в математическом пакете. Это позволило значительно ускорить процесс обработки данных. В результате было получено среднее значение диаметров построенных окружностей $d_{cp1}=1,23$ мм, дисперсия $\sigma^2=0,37$ и гистограмма распределения размеров пор (рис. 5).

Рис. 5. Гистограмма распределения размеров пор (*n* – количество окружностей с диаметром из рассматриваемого диапазона, *N* – общее количество построенных окружностей, *N*=150)

Расчетное значение среднего размера пор, определенное по формуле (8) для образца №1 составило 1,26 мм. Можно отметить хорошее совпадение результата цифровой обработки сечения с расчетной формулой (8), поэтому средние размеры пор образцов №2 и №3 были рассчитаны по ней. Их значения составили соответственно $d_{cp2}=1,2$ мм и $d_{cp3}=1,2$ мм.

Величина параметра функции распределения для образца №1 составила α_1 =4. Учитывая одинаковый диаметр проволоки и технологию изготовления других образцов, для образцов №2 и №3 значения параметров функции распределения приняты также α_2 =4 и α_3 =4. Полученные величины, характеризующие геометрические особенности исследуемых пористых втулок, использовались при обработке экспериментальных данных по исследованию перепада давления для составления уравнения подобия вида $\xi = f(Re)$.

Результаты экспериментальных исследований

На рис. 6 приведены графики перепада статического давления dP в зависимости от расхода рабочей среды Q для трех исследованных образцов. Очевидно их существенное различие, обусловленное разной температуры при проведении испытаний, а также диаметром и толщиной пористых втулок. Далее была проведена попытка обобщить полученные экспериментальные данные, согласно представленной ранее методике. На рис. 7 представлены зависимости коэффициентов гидравлического трения на единицу толщины в пористых образцах от чисел Рейнольдса, определенные по формулам (2)-(3) на основе экспериментальных данных.

∎Образец №1 (T=17±1°C) \blacktriangle Образец №2 (T=25±1°C) \circ Образец №3 (T=21±1°C)

Рис. 6. Первичные экспериментальные данные по определению перепада давления от расхода воды в каналах с пористыми вставками

Рис. 7. Результаты обработки экспериментальных данных

Анализ полученных результатов проводился в предположении, что зависимость коэффициента гидравлического сопротивления на единицу толщины пористого слоя от числа Рейнольдса может быть аппроксимирована степенной функцией. При этом рассматривались различные диапазоны по числам Рейнольдса, в рамках которых степенные функции имеют наименьшее отклонение от экспериментальных значений.

Методом наименьших квадратов были получены диапазоны по числам Рейнольдса, в рамках которых данные весьма удовлетворительно описываются одними функциями. Однако, на рис. 7 можно видеть, что общих зависимостей для всех трех элементов нет. Графики имеют схожие углы наклона, но отличаются постоянным множителем. Это может свидетельствовать о качественно одинаковом характере течения рабочей среды в пористых втулках. Однако помимо пористости, среднего размера пор и зависимости распределения пор по размерам на гидравлическое сопротивление могут оказывать влияние и другие геометрические параметры, например, соотношение размера пор и толщины слоя, диаметр навивки проволоки, отношение диаметра втулки к ее толщине, шероховатость проволоки и т.п. Влияние этих факторов на гидросопротивление требует дополнительного изучения.

Несмотря на сказанное выше, основной результат, который удалось получить для всех трех исследованных образцов – это граничные значения чисел Рейнольдса, характеризующие возможную смену режимов или характера течения среды:

1) в диапазоне числе Рейнольдса $30 < \text{Re} \le 200$ зависимость ζ может быть аппроксимирована функцией $\zeta \sim \text{Re}^{-0.48}$;

2) в диапазоне числе Рейнольдса 200<Re \leq 600 зависимость ζ может быть аппроксимирована функцией $\zeta \sim \text{Re}^{-0,24}$;

3) в диапазоне числе Рейнольдса Re>600 зависимость ζ может быть аппроксимирована функцией ζ ~ Re^{-0,13}.

Заключение

Приведены результаты экспериментального определения значений коэффициента гидравлического трения на единицу толщины слоя пористых вставок в зависимости от чисел Рейнольдса. В качестве характерного размера использовался средний диаметр пор с учетом поправки на вероятностное распределение пор по размерам, а в качестве характерной скорости выбиралась средняя скорость потока в порах.

Полученные результаты являются важными для выбора режимных параметров течения жидкости при проведении гидравлического расчета контуров с подобными пористыми структурами, а также при подборе насосов и циркуляторов, обеспечивающих движение жидкости в таких контурах.

Библиографический список

- 1. Жижкин, А.М. Гидравлические потери в элементах из материала МР // Вестник Самарского государственного аэрокосмического университета им. академика С.П. Королева. – 2006. – № 2-2 (10). – С. 173-176.
- 2. Жижкин, А.М. Распределение пор по размерам в тонкостенных изделиях из материала МР // В сборнике: Проблемы и перспективы развития двигателестроения: Труды международной научнотехнической конференции. – Самара, 2003. – С. 185-190.
- Жижкин, А.М. Влияние структуры пористого материала МР на его расходные характеристики / А.М. Жижкин, Г.В. Лазуткин, М.А. Брылева, Г.В. Изранова, С.В. Путилин // Вестник СамГУПС. – 2017. – № 4 (38). – С. 16-24.
- 4. Жижкин А.М. Особенности гидродинамики тонкостенных пористых изделий из материала МР // Вестник Самарского государственного аэрокосмического университета им. академика С.П. Королева. 2011. № 3-3 (27). С. 145-149.

5. Жижкин, А.М. Проектный расчет фильтрующих элементов из материала МР / А.М. Жижкин, Г.В. Лазуткин // Вестник СамГУПС. – 2015. – № 1 (27). – С. 145-152.

Дата поступления в редакцию: 23.02.2019

Yu.I. Anoshkin, A.A. Dobrov, M.A. Legchanov, M.A. Subarev, A.E. Khrobostov

EXPERIMENTAL STUDY OF HYDRAULIC RESISTANCE OF POROUS MATERIAL MADE OF SPIRAL WIRE IN ROUND CHANNEL

Nizhny Novgorod state technical university n.a. R.E. Alekseev

Purpose: Investigation of hydraulic pressure losses per unit length of a porous element, which depend not only on the properties of the pumped liquid and on the speed of its flow, but also on the characteristics of the porous structure. **Design/methodology/approach:** The paper presents experimental data obtained in the study of pressure drop from the flow of the working medium in three porous samples on the bench of NSTU FT-18. The data were reduced to a dimensionless form according to the theory of hydrodynamic similarity according to the recommendations given in the literature for such porous materials.

Results: The values of the boundaries of the ranges of Reynolds numbers are obtained, which characterize a possible change of regimes or the nature of the flow.

Key words: hydrodynamics, porous materials, coefficient of hydraulic resistance.