

Министерство науки и высшего образования Российской Федерации федеральное государственное бюджетное образовательное учреждение высшего образования

«Нижегородский государственный технический университет им.Р.Е.Алексеева»

Программа кандидатского экзамена

Факультет подготовки специалистов высшей квалификации

УТВЕРЖДАЮ Проректор по научной работе

А.А. Куркин

«31» мая 2022 г

Кафедра «Автоматизация машиностроения»

ПРОГРАММА КАНДИДАТСКОГО ЭКЗАМЕНА

ПО СПЕЦИАЛЬНОСТИ 2.3.3 «АВТОМАТИЗАЦИЯ И УПРАВЛЕНИЕ ТЕХНОЛОГИЧЕСКИМИ ПРОЦЕССАМИ И ПРОИЗВОДСТВАМИ»

Область науки:

2. Технические науки

Группа научных специальностей:

2.3. Информационные технологии и телекоммуникации

Наименование отрасли науки, по которой присуждаются ученые степени:

технические науки

Научная специальность

2.3.3. Автоматизация и управление технологическими процессами и производствами

Нижний Новгород 2022

СК-РП-15.1-04-22

Министерство науки и высшего образования Российской Федерации

федеральное государственное бюджетное образовательное учреждение высшего образования

«Нижегородский государственный технический университет им.Р.Е.Алексеева»

Программа кандидатского экзамена

Факультет подготовки специалистов высшей квалификации

Программа предназначена для методического сопровождения процесса подготовки аспирантов (соискателей) к сдаче кандидатского экзамена по специальности 2.3.3 «Автоматизация и управление технологическими процессами и производствами».

Программа составлена в соответствии с требованиями следующих нормативных документов:

- 1. Федеральные государственные требования к структуре программ подготовки научных и научно-педагогических кадров в аспирантуре приказ Минобрнауки России от 20.10.2021 г. № 951.
- 2. Паспорт научной специальности <u>2.3.3 «Автоматизация и управление технологическими процессами и производствами»</u>, разработанный экспертами ВАК Минобрнауки России в рамках Номенклатуры научных специальностей, утвержденной приказом Минобрнауки России от 24.02.2021 г. № 118.
- 3. Учебный план НГТУ по программе подготовки научных и научно-педагогических кадров в аспирантуре по научной специальности <u>2.3.3 «Автоматизация и управление технологическими процессами и производствами»</u>.

РЕКОМЕНДОВАНА кафедрой «Автоматизация машиностроения» (AM)				
протокол №7 от	" <u>31</u> " <u>мая</u>	2022г.		
Заведующий кафедрой	й «АМ»			
К.Т.Н, ДОЦ.	Манцеро расши	ов С.А. ифровка подписи		
СОГЛАСОВАНО:				
И.о. декана факультет	а подготовки спец	иалистов высшей квалиф	икации	
	EKO	Трубочкина Е.Л.	«31» мая 2022 г	
	личная подпись	расшифровка подписи	дата	

федеральное государственное бюджетное образовательное учреждение высшего образования

«Нижегородский государственный технический университет им.Р.Е.Алексеева»

Программа кандидатского экзамена

Факультет подготовки специалистов высшей квалификации

СОДЕРЖАНИЕ

1	Общие положения	4
2	Программа кандидатского экзамена по специальности 2.3.3 «Автомати-	
	зация и управление тех-нологическими процессами и производствами»	4
3	Дополнительная программа	11
	Приложение. Пример оформления дополнительной программы	12

1 Общие положения

Программа кандидатского экзамена по специальной дисциплине состоит из двух частей:

- 1) основная программа по специальности, разработанной в соответствии с паспортом научной специальности 2.3.3 «Автоматизация и управление технологическими процессами и производствами»;
 - 2) дополнительной программы, разрабатываемой аспирантом (соискателем).

Экзаменационные билеты должны включать 2-3 вопроса из основной программы и 1-2 вопроса из дополнительной программы.

2. Программа кандидатского экзамена по специальности 2.3.3 «Автоматизация и управление технологическими процессами и производствами»

Программа составлена в соответствии с паспортом специальности 2.3.3 «Автоматизация и управление технологическими процессами и производствами», с опорой на дисциплины, связанные с особенностями формирования и развития у аспирантов знаний и умений, позволяющих осуществлять планирование и проведение научных исследований в области автоматизации и управлении технологическими процессами и производствами, формирования навыков и умений в области теории и практики автоматизации и управлении технологическими процессами и производствами и основных методов научных исследований, применяемых в данной области.

2.1 Основы теории управления

Основные понятия теории управления: цели и принципы управления, динамические системы. Математическое описание объектов управления: пространство состояний, передаточные функции, структурные схемы. Основные задачи теории управления: стабилизация, слежение, программное управление, оптимальное управление, экстремальное регулирование. Классификация систем управления. Автоматические и автоматизированные системы управления (АСУ) технологическими процессами (ТП) и производствами. Основные подходы к анализу и синтезу автоматических и автоматизированных управляемых систем.

Структуры систем управления: разомкнутые системы, системы с обратной связью, комбинированные системы. Динамические и статические характеристики систем управления: переходная и весовая функции и их взаимосвязь, частотные характеристики. Типовые динамические звенья и их характеристики.

Понятие об устойчивости систем управления. Устойчивость по Ляпунову, асимптотическая, экспоненциальная устойчивость. Устойчивость по первому приближению. Функции Ляпунова. Теоремы об устойчивости и неустойчивости.

Версия: 1.0	Без подписи документ действителен 3 суток после распечатки. Дата и время распечатки:	КЭ:	УЭ №	Стр. 4 из 16

федеральное государственное бюджетное образовательное учреждение высшего образования

«Нижегородский государственный технический университет им.Р.Е.Алексеева»

Программа кандидатского экзамена

Факультет подготовки специалистов высшей квалификации

Устойчивость линейных стационарных систем. Критерии Ляпунова, Льенара-Шипара, Гурвица, Михайлова. Устойчивость линейных нестационарных систем. Метод сравнения в теории устойчивости: леммы Гронуолла-Беллмана, Бихари, неравенство Чаплыгина. Устойчивость линейных систем с обратной связью: критерий Найквиста, большой коэффициент усиления.

Методы синтеза обратной связи. Элементы теории стабилизации. Управляемость, наблюдаемость, стабилизируемость. Дуальность управляемости и наблюдаемости. Канонические формы. Линейная стабилизация. Стабилизация по состоянию, по выходу. Наблюдатели состояния. Дифференциаторы.

Качество процессов управления в линейных динамических системах. Показатели качества переходных процессов. Методы оценки качества. Коррекция систем управления.

Управление при действии возмущений. Различные типы возмущений: операторные, координатные. Инвариантные системы. Волновое возмущение. Неволновое возмущение. Метод квазирасщепления. Следящие системы.

Релейная обратная связь: алгебраические и частотные методы исследования.

Стабилизация регулятором переменной структуры: скалярные и векторные скользящие режимы.

Универсальный регулятор (стабилизатор Нуссбаума).

Абсолютная устойчивость. Геометрические и частотные критерии абсолютной устойчивости. Абсолютная стабилизация. Адаптивные системы стабилизации: метод скоростного градиента, метод целевых неравенств.

Управление в условиях неопределенности. Позитивные динамические системы: основные определения и свойства, стабилизация позитивных систем при неопределенности.

Аналитическое конструирование. Идентификация динамических систем. Экстремальные регуляторы – самооптимизация.

Классификация дискретных систем автоматического управления. Уравнения импульсных систем во временной области. Разомкнутые системы. Описание импульсного элемента. Импульсная характеристика приведенной непрерывной части. Замкнутые системы. Уравнения разомкнутых и замкнутых импульсных систем относительно решетчатых функций. Дискретные системы. ZET-преобразование решетчатых функций и его свойства.

Передаточная, переходная и весовая функции импульсной системы. Классификация систем с несколькими импульсными элементами. Многомерные импульсные системы. Описание многомерных импульсных систем с помощью пространства состояний.

федеральное государственное бюджетное образовательное учреждение высшего образования

«Нижегородский государственный технический университет им.Р.Е.Алексеева»

Программа кандидатского экзамена

СК-РП-15.1-04-22

Факультет подготовки специалистов высшей квалификации

Устойчивость дискретных систем. Исследование устойчивости по первому приближению, метод функций Ляпунова, метод сравнения. Теоремы об устойчивости: критерий Шора-Куна. Синтез дискретного регулятора по состоянию и по выходу, при наличии возмущений.

Элементы теории реализации динамических систем.

Консервативные динамические системы. Элементы теории бифуркации.

Основные виды нелинейностей в системах управления. Методы исследования поведения нелинейных систем.

Автоколебания нелинейных систем, отображение А. Пуанкаре, функция последования, диаграмма Ламеррея. Орбитальная устойчивость. Теоремы об устойчивости предельных циклов: Андронова-Витта, Кенигса. Существование предельных циклов: теоремы Бендиксона, Дюлока.

Дифференциаторы выхода динамической системы.

Гладкие нелинейные динамические системы на плоскости: анализ управляемости, наблюдаемости, стабилизируемости и синтез обратной связи.

Управление системами с последействием.

Классификация оптимальных систем. Задачи оптимизации. Принцип максимума Понтрягина. Динамическое программирование.

Управление сингулярно-возмущенными системами.

 H^2 - и H^∞ -стабилизация. Minimax-стабилизация.

Игровой подход к стабилизации. I_1 -оптимизация управления. Вибрационная стабилизация.

Эвристические методы стабилизации: нейросети, размытые множества, интеллектуальное управление.

2.2 Задачи и методы оптимизации

Постановка задач математического программирования. Оптимизационный подход к проблемам управления технологическими процессами и производственными системами. Допустимое множество и целевая функция. Формы записи задач математического программирования. Классификация задач математического программирования.

Постановка задачи линейного программирования. Стандартная и каноническая формы записи. Допустимые множества и оптимальные решения задач линейного программирования. Выпуклые множества. Условия существования и свойства оптимальных решений задачи линейного программирования. Опорные решения системы линейных уравнений. Сведение задачи линейного программирования к дискретной оптимизации. Симплекс-метод.

федеральное государственное бюджетное образовательное учреждение высшего образования

«Нижегородский государственный технический университет им.Р.Е.Алексеева»

Программа кандидатского экзамена

СК-РП-15.1-04-22

Факультет подготовки специалистов высшей квалификации

Теория двойственности в линейном программировании. Двойственные задачи. Геометрическая интерпретация двойственных переменных. Зависимость оптимальных решений задачи линейного программирования от параметров.

Необходимые условия оптимальности в нелинейных задачах математического программирования. Локальный и глобальный экстремум. Необходимые условия безусловного экстремума дифференцируемых функций. Необходимые условия экстремума дифференцируемой функции на выпуклом множестве. Необходимые условия Куна-Таккера. Задачи об условном экстремуме и метод множителей Лагранжа.

Локальный и глобальный экстремум. Необходимые условия безусловного экстремума дифференцируемых функций. Необходимые условия экстремума дифференцируемой функции на выпуклом множестве. Необходимые условия Куна-Таккера. Задачи об условном экстремуме и метод множителей Лагранжа.

Выпуклые функции и их свойства. Постановка задачи выпуклого программирования и формы их записи. Простейшие свойства оптимальных решений. Необходимые и достаточные условия экстремума дифференцируемой выпуклой функции на выпуклом множестве и их применение. Теорема Удзавы. Теорема Куна-Таккера и ее геометрическая интерпретация. Основы теории двойственности в выпуклом программировании. Линейное программирование как частный случай выпуклого. Понятие о негладкой выпуклой оптимизации. Субдифференциал.

Классификация методов безусловной оптимизации. Скорости сходимости. Методы первого порядка. Градиентные методы. Методы второго порядка. Метод Ньютона и его модификации. Квазиньютоновские методы. Методы переменной метрики. Методы сопряженных градиентов. Конечно-разностная аппроксимация производных. Конечно-разностные методы. Методы нулевого порядка. Методы покоординатного спуска, Хука-Дживса, сопряженных направлений. Методы деформируемых конфигураций. Симплексные методы.

Основные подходы к решению задач с ограничениями. Классификация задач и методов. Методы проектирования. Метод проекции градиента. Метод условного градиента. Методы сведения задач с ограничениями к задачам безусловной оптимизации. Методы внешних и внутренних штрафных функций. Специальные методы решения задач условной оптимизации. Комбинированный метод проектирования и штрафных функций. Метод зеркальных построений. Метод скользящего допуска.

Задачи стохастического программирования. Стохастические квазиградиентные методы. Прямые и непрямые методы. Метод проектирования стохастических квазиградиентов. Методы стохастической аппроксимации. Методы с операцией усреднения. Методы случайного поиска. Стохастические задачи с ограничениями вероятностей природы. Стохастические разностные методы. Методы с усреднением направлений спуска. Специальные приемы регулировки шага.

федеральное государственное бюджетное образовательное учреждение высшего образования

«Нижегородский государственный технический университет им.Р.Е.Алексеева»

Программа кандидатского экзамена

Факультет подготовки специалистов высшей квалификации

Методы и задачи дискретного программирования. Задачи целочисленного линейного программирования. Методы отсечения Гомори. Метод ветвей и границ. Задача о назначениях. Венгерский алгоритм. Задачи оптимизация на сетях и графах.

2.3 Задачи и методы принятия решений

Постановка задач принятия решений. Классификация задач принятия решений. Этапы решения задач. Экспертные процедуры. Задачи оценивания. Алгоритм экспертизы. Методы получения экспертной информации. Шкалы измерений, методы экспертных измерений. Методы опроса экспертов, характеристики экспертов. Методы обработки экспертной информации, оценка компетентности экспертов, оценка согласованности мнений экспертов.

Методы формирования исходного множества альтернатив. Морфологический анализ.

Методы многокритериальной оценки альтернатив. Классификация методов. Множества компромиссов и согласия, построение множеств. Функция полезности. Аксиоматические методы многокритериальной оценки. Прямые методы многокритериальной оценки альтернатив. Методы нормализации критериев. Характеристики приоритета критериев. Постулируемые принципы оптимальности (равномерности, справедливой уступки, главного критерия, лексикографический). Методы аппроксимации функции полезности. Деревья решений. Методы компенсации. Методы порогов несравнимости. Диалоговые методы принятия решений.

Принятие решений в условиях неопределенности. Виды неопределенности. Статистические модели принятия решений. Методы глобального критерия. Критерии Байеса-Лапласа, Гермейера, Бернулли-Лапласа, максиминный (Вальда), минимаксного риска Сэвиджа, Гурвица, Ходжеса-Лемана и др.

Нечеткие множества. Основные определения и операции над нечеткими множествами. Нечеткое моделирование. Задачи математического программирования при нечетких исходных условиях. Постановки задач на основе различных принципов оптимальности. Нечеткие отношения, операции над отношениями, свойства отношений. Принятие решений при нечетком отношении предпочтений на множестве альтернатив. Принятие решений при нескольких отношениях предпочтения.

Свойства сложных систем. Основные принципы системного подхода к оценке состояния и управлению сложными системами. Слабоструктурированные задачи управления, методы и системы принятия управленческих решений. Интеллектуальные управляющие системы. Нечеткое адаптивное управление. Методы синтеза САУ с нечеткими регуляторами. Принцип двухканальной инвариантности. Многокритериальные задачи управления.

федеральное государственное бюджетное образовательное учреждение высшего образования

«Нижегородский государственный технический университет им.Р.Е.Алексеева»

Программа кандидатского экзамена

Факультет подготовки специалистов высшей квалификации

2.4 Информационное обеспечение процессов автоматизации

Понятие данных, системы данных. Объекты данных. Атрибуты объектов. Значения данных. Идентификаторы объекта данных. Атрибуты объектов. Значения данных. Идентификаторы объекта данных, ключевые элементы данных. Понятие записи данных. Файлы данных. Базы данных. Требования, предъявляемы к базам данных. Распределенные базы данных.

Модели данных. Реляционная модель данных. Сетевая модель данных. Иерархическая модель данных. Взаимосвязи между объектами и атрибутами.

Системы управления базами данных. Особенности управления распределенными базами данных и системы управления распределенными базами данных. Стандарты на обмен данными между подсистемами АСУ.

Проектирование баз данных. Жизненный цикл базы данных. Концептуальная модель. Логическая модель. Словари данных, их назначение, интегрированные и независимые словари данных. Упорядочение канонических структур. Синтез логических структур локальных и распределенных баз данных.

Языки, используемые в базах данных. Языки описания данных. Языки манипулирования данными. Уровни абстракции для описания данных.

2.5 Программное обеспечение АСУ

Организация программного обеспечения АСУ. Технологии структурного и объективно-ориентированного программирования. Конструирование абстрактных типов данных. Инкапсуляция данных и методов их обработки в классах объектов. Иерархия классов. Базовые и производные классы. Простое и множественное наследование. Перегрузка методов и операций обработки данных в классах объектов. Абстрактные классы. Полиморфная обработка данных. Виртуальные интерфейсы. Параметризация типов данных в классах и функциях. Типовые структуры описания абстрактных данных (массив, стек, очередь, двоичное дерево). Программирование математических структур (матрицы и конечные графы). Методы программной обработки данных. Итерация и рекурсия. Сортировка и поиск. Криптообработка и сжатие данных. Перечисление и упорядочивание комбинаторных объектов. Ввод-вывод данных. Обработка файлов.

Технологии программирования. Методические и инструментальные средства разработки модульного программного обеспечения АСУ. Компиляция и редактирование связей. Верификация и отладка программы. Автоматизация разработки программных проектов. Программная документация.

Виды и компоненты программного обеспечения. Операционные системы. Трансляторы. Эмуляторы. Прикладное программное обеспечение. Понятие системы сквозного проектирования.

федеральное государственное бюджетное образовательное учреждение высшего образования

«Нижегородский государственный технический университет им.Р.Е.Алексеева»

Программа кандидатского экзамена

СК-РП-15.1-04-22

Факультет подготовки специалистов высшей квалификации

Моделирующие системы в АСУ. Системы моделирования электрических схем. Математические модели отдельных компонент схемы. Формирование комплексной модели проектируемого объекта на основе моделей отдельных компонентов.

Состав и структура графической подсистемы АСУ. Базовая графическая система. Прикладная графическая система. Лингвистический и геометрический процессоры. Процессоры визуализации и монитор графической подсистемы. Архитектура графических терминалов и рабочих станций.

2.6 Инструментальное обеспечение АСУ

Теоретические основы, средства и методы промышленной технологии создания АСУПП, АСУП, АСТПП и др. Модели и методы идентификации производственных процессов, комплексов и интегрированных систем управления.

Методы совместного проектирования организационно-технологических распределенных комплексов и систем управления ими. Формализованные методы анализа, синтеза, исследования и оптимизации модульных структур систем сбора и обработки данных в АСУТП, АСУП, АСТПП и др.

Методы эффективной организации и ведения специализированного информационного и программного обеспечения АСУПІ, АСУП, АСТПП и др., включая базы и банки данных и методы их оптимизации. Методы синтеза специального математического обеспечения, пакетов прикладных программ и типовых модулей, функциональных и обеспечивающих подсистем АСУТП, АСУП, АСТПП и др.

Методы планирования и оптимизации отладки, сопровождения, модификации и эксплуатации задач функциональных и обеспечивающих подсистем АСУТП, АСУП, АСТПП и др., включающие задачи управления качеством, финансами и персоналом. Методы контроля, обеспечения достоверности, защиты и резервирования информационного и программного обеспечения АСУП, АСУП, АСТПП и др.

Теоретические основы и прикладные методы анализа и повышения эффективности, надежности и живучести АСУ на этапах их разработки, внедрения и эксплуатации. Теоретические основы, методы и алгоритмы диагностирования, (определения работоспособности, поиск неисправностей и прогнозирования) АСУП, АСУП, АСТПП и др.

Теоретические основы, методы и алгоритмы интеллектуализации решения прикладных задач при построении АСУ широкого назначения (АСУТП, АСУП, АСТПП и др.) Теоретические основы, методы и алгоритмы построения экспертных и диалоговых подсистем, включенных в АСУТП, АСУП, АСТПП и др.

Использование методов автоматизированного проектирования для повышения эффективности разработки и модернизации АСУ. Средства и методы проектирова-

Версия: 1.0	Без подписи документ действителен 3 суток после распечатки. Дата и время распечатки:	КЭ:	УЭ №	Стр. 10 из 16

федеральное государственное бюджетное образовательное учреждение высшего образования

«Нижегородский государственный технический университет им.Р.Е.Алексеева»

Программа кандидатского экзамена

СК-РП-15.1-04-22

Факультет подготовки специалистов высшей квалификации

ния технического, математического, лингвистического и других видов обеспечения АСУ. Разработка методов обеспечения совместимости и интеграции АСУ, АСУТП, АСУП, АСТПП и других систем и средств управления.

2.7 Список литературы

- 1. Ройтенберг Я.Н. Автоматическое управление. М.: Наука, 1992.
- 2. Теория автоматического управления. Ч. 1 и 2 / Под ред. А.А. Воронова. М.: Высшая школа, 1986.
- 3. Попов Е.Н. Теория нелинейных систем автоматического управления. М.: Наука, 1988.
- 4. Методы классической и современной теории автоматического управления: Уч. в 3-х т. М.: Изд. МГТУ, 2000.
- 5. Емельянов С.В., Коровин С.К. Новые типы обратной связи. Управление при неопределенности. М.: Наука, 1997.
- 6. Рыков А.С. Методы системного анализа: оптимизация. М.: Экономика, 1999.
- 7. Мамиконов А.Г. Теоретические основы автоматизированного управления. М.: Высшая школа, 1994.
- 8. Поспелов Д.А. Ситуационное управление: Теория и практика. М.: Наука, 1986.
- 9. Вихров Н.М., Гаскаров Д.В. Грищенков А.А., Шнуренко А.А. Управление и оптимизация производственно-технологических процессов / Под ред. Д.В. Гаскарова. СПб.: Энергоатомиздат, Санкт-Петербургское отд., 1995.
- 10. Кузнецов Н.А., Кульба В.В., Ковалевский С.С., Косяченко С.А. Методы анализа и синтеза модульных информационно-управляющих систем. М.: Физматлит, 2002.

3 Дополнительная программа

Дополнительная программа, самостоятельно составляемая аспирантом (соискателем), включает в себя титульный лист, не менее 15 вопросов по теме диссертации и не менее 15 источников литературы. Дополнительная программа должна быть подписана научным руководителем и согласована с деканом факультета подготовки специалистов высшей квалификации. Пример оформления дополнительной программы приведен в Приложении.

Версия: 1.0	Без подписи документ действителен 3 суток после распечатки. Дата и время распечатки:	КЭ:	УЭ №	Стр. 11 из 16

федеральное государственное бюджетное образовательное учреждение высшего образования

«Нижегородский государственный технический университет им.Р.Е.Алексеева»

Программа кандидатского экзамена

Факультет подготовки специалистов высшей квалификации

ПРИЛОЖЕНИЕ

Пример оформления дополнительной программы

Минобрнауки России

федеральное государственное бюджетное образовательное учреждение высшего образования

НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМ. Р.Е. АЛЕКСЕЕВА

УТВЕРЖДАЮ
Декан ФСВК
Р.Ш. Бедретдинов
« <u></u> »

Дополнительная программа

к кандидатскому экзамену

по специальности 2.3.3 – Автоматизация и управление технологическими процессами и производствами

Нижний Новгород 2022

Версия: 1.0	Без подписи документ действителен 3 суток после распечатки. Дата и время распечатки:	КЭ:	УЭ №	Стр. 12 из 16

федеральное государственное бюджетное образовательное учреждение высшего образования

«Нижегородский государственный технический университет им.Р.Е.Алексеева»

Программа кандидатского экзамена

СК-РП-15.1-04-22

Факультет подготовки специалистов высшей квалификации

Дополнительная программа экзамена по специальности

- 1. Устойчивость линейных стационарных систем. Критерии Ляпунова, Льенара-Шипара, Гурвица, Михайлова. Устойчивость линейных нестационарных систем. Метод сравнения в теории устойчивости: леммы Гронуолла-Беллмана, Бихари, неравенство Чаплыгина. Устойчивость линейных систем с обратной связью: критерий Найквиста, большой коэффициент усиления.
- 2. Управление при действии возмущений. Различные типы возмущений: операторные, координатные. Инвариантные системы. Волновое возмущение. Неволновое возмущение. Метод квазирасщепления. Следящие системы.
- 3. Релейная обратная связь: алгебраические и частотные методы исследования.
- 4. Стабилизация регулятором переменной структуры: скалярные и векторные скользящие режимы.
- 5. Универсальный регулятор (стабилизатор Нуссбаума).
- 6. Абсолютная устойчивость. Геометрические и частотные критерии абсо-лютной устойчивости. Абсолютная стабилизация. Адаптивные системы стабилизации: метод скоростного градиента, метод целевых неравенств.
- 7. Задачи стохастического программирования. Стохастические квазиградиентные методы. Прямые и непрямые методы. Метод проектирования стохастических квазиградиентов. Методы стохастической аппроксимации.
- 8. Методы с операцией усреднения. Методы случайного поиска. Стохастические задачи с ограничениями вероятностей природы. Стохастические разностные методы. Методы с усреднением направлений спуска. Специальные приемы регулировки шага.
- 9. Методы и задачи дискретного программирования. Задачи целочисленного линейного программирования. Методы отсечения Гомори. Метод ветвей и гра-

Министерство науки и высшего образования Российской Федерации федеральное государственное бюджетное образовательное учреждение высшего образования «Нижегородский государственный технический университет им.Р.Е.Алексеева»

Программа кандидатского экзамена

СК-РП-15.1-04-22

Факультет подготовки специалистов высшей квалификации

ниц. Задача о назначениях. Венгерский алгоритм. Задачи оптимизация на сетях и графах.

- 10. Методы многокритериальной оценки альтернатив. Классификация методов. Множества компромиссов и согласия, построение множеств.
- 11. Принятие решений в условиях неопределенности. Виды неопределенности. Статистические модели принятия решений. Методы глобального критерия.
- 12. Модели данных. Реляционная модель данных. Сетевая модель данных. Иерархическая модель данных. Взаимосвязи между объектами и атрибутами.
- 13.Состав и структура графической подсистемы АСУ. Базовая графическая система. Прикладная графическая система.
- 14. Лингвистический и геометрический процессоры. Процессоры визуализации и монитор графической подсистемы. Архитектура графических терминалов и рабочих станций.
- 15. Теоретические основы и прикладные методы анализа и повышения эффективности, надежности и живучести АСУ на этапах их разработки, внедрения и эксплуатации.
- 16. Теоретические основы, методы и алгоритмы диагностирования, (определения работоспособности, поиск неисправностей и прогнозирования) АСУП, АСУП, АСТПП и др.

Министерство науки и высшего образования Российской Федерации федеральное государственное бюджетное образовательное учреждение высшего образования «Нижегородский государственный технический университет им.Р.Е.Алексеева»

СК-РП-15.1-04-22

Программа кандидатского экзамена

Факультет подготовки специалистов высшей квалификации

Список литературы

- 1. Емельянов С.В., Коровин С.К. Новые типы обратной связи. Управление при неопределенности. М.: Наука, 1997.
- 2. Рыков А.С. Методы системного анализа: оптимизация. М.: Экономика, 1999.
- 3. Мамиконов А.Г. Теоретические основы автоматизированного управления. М.: Высшая школа, 1994.
- 4. Поспелов Д.А. Ситуационное управление: Теория и практика. М.: Наука, 1986.
- 5. Вихров Н.М., Гаскаров Д.В. Грищенков А.А., Шнуренко А.А. Управление и оптимизация производственно-технологических процессов / Под ред. Д.В. Гаскарова. СПб.: Энергоатомиздат, Санкт-Петербургское отд., 1995.
- 6. Кузнецов Н.А., Кульба В.В., Ковалевский С.С., Косяченко С.А. Методы анализа и синтеза модульных информационно-управляющих систем. М.: Физматлит, 2002.
- 7. Клир Дж. Системология. Автоматизация решения системных задач. М.: Радио и связь, 1990.
- 8. Иванов В.А., Ющенко А.С. Теория дискретных систем автоматического управления. М.: Наука, 1983.
- 9. Воронов А.А. Введение в динамику сложных управляемых систем. М.: Наука, 1985.
- 10. Первозванский А.А. Курс теории автоматического управления. М.: Наука, 1986.
- 11. Гаврилова Т.А., Хорошевский В.Г. Базы знаний интеллектуальных систем. СПб.: Питер, 2000.
- 12. Иванов А.А. Автоматизация технологических процессов и производств. Форум, 2011.

Версия: 1.0	Без подписи документ действителен 3 суток после распечатки. Дата и время распечатки:	КЭ:	УЭ №	Стр. 15 из 16

Министерство науки и высшего образования Российской Федерации федеральное государственное бюджетное образовательное учреждение высшего образования «Нижегородский государственный технический университет им.Р.Е.Алексеева»

Программа кандидатского экзамена

СК-РП-15.1-04-22

Факультет подготовки специалистов высшей квалификации

- 13.Э. М. Мончарж. Постановка задач автоматизации технологических процессов. НГТУ, 2003.
- 14.Под ред.Ю.М.Соломенцева. Автоматизация производства. М.: Высш. шк., 2005.
- 15.В.В. Шувалов, ГА. Огаджанов, В.А. Голубятников. Автоматизация производственных процессов в химической промышленности. М.: Химия, 1991.
- 16.Л. Н. Гунин, В. П. Хранилов. Модель внедрения ИПИ-технологий на предприятиях радиоприборостроения в условиях организационных изменений и ограниченных ресурсов. НГТУ, Н. Новгород. 2006.
- 17.Ю. З. Житников [и др.] Автоматизация производственных процессов в машиностроении. Старый Оскол ООО "ТНТ", 2011.
- 18.Волчкевич Л.И. Автоматизация производственных процессов. М.: Машиностроение, 2005.

Научный руководитель д.т.н., профессор

О.В. Кретинин