

Министерство науки и высшего образования Российской Федерации федеральное государственное бюджетное образовательное учреждение

высшего образования

«Нижегородский государственный технический университет им.Р.Е.Алексеева»

Рабочая программа дисциплины

Факультет подготовки специалистов высшей квалификации

Рабочая программа дисциплины «Механика жидкости, газа и плазмы»

> **УТВЕРЖДАЮ** Проректор по научной работе

> > А.А. Куркин

«21» марта 2022 г

Кафедра «Прикладная математика»

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ «МЕХАНИКА ЖИДКОСТИ, ГАЗА И ПЛАЗМЫ»

Область науки:

1. Естественные науки

Группа научных специальностей:

1.1. Математика и механика

Наименование отрасли науки, по которой

технические науки, физико-

присуждаются ученые степени:

математические науки

Научная специальность

1.1.9. Механика жидкости, газа и плаз-

МЫ

Форма обучения очная

Нижний Новгород 2022

Рабочая программа дисциплины «Механика жидкости, газа и плазмы» для аспирантов специальности 1.1.9 «Механика жидкости, газа и плазмы» /авт. А.А. Куркин – Нижний Новгород: НГТУ, 2022. - 14 с.

Рабочая программа предназначена для методического сопровождения преподавания дисциплины (модуля) «Механика жидкости, газа и плазмы» аспирантам очной формы обучения по специальности 1.1.9 «Механика жидкости, газа и плазмы».

Рабочая программа дисциплины составлена в соответствии с требованиями следующих нормативных документов:

- 1. Федеральные государственные требования к структуре программ подготовки научных и научно-педагогических кадров в аспирантуре приказ Минобрнауки России от 20.10.2021 г. № 951.
- 2. Паспорт научной специальности 1.1.9 «Механика жидкости, газа и плазмы», разработанный экспертами ВАК Минобрнауки России в рамках Номенклатуры научных специальностей, утвержденной приказом Минобрнауки России от 24.02.2021 г. № 118.
- 3. Учебный план НГТУ по программе подготовки научных и научно-педагогических кадров в аспирантуре по научной специальности 1.1.9 «Механика жидкости, газа и плазмы».
- 4. Программа кандидатского экзамена по специальности 1.1.9 «Механика жидкости, газа и плазмы».

Автор _____

____ А.А. Курки

18 марта 2022 г.

НГТУ

Рабочая программа дисциплины

Рабочая программа дисциплины «Механика жидкости, газа и плазмы»

СОДЕРЖАНИЕ

		стр
1	Цель и задачи освоения дисциплины	4
2	Место дисциплины в структуре программы аспирантуры	4
3	Структура и содержание дисциплины (модуля)	5
3.1	Структура дисциплины (модуля).	5
3.2	Содержание дисциплины (модуля)	5
3.2.1	Разделы дисциплины (модуля) и виды занятий	5
3.2.2	Содержание разделов дисциплины (модуля).	6
3.3	Практические занятия (семинары)	8
3.4	Лабораторные работы	8
3.5	Самостоятельная работа аспиранта при изучении разделов дисциплины	8
4	Образовательные технологии	9
5	Оценочные средства для текущего контроля успеваемости и промежу-	
	точной аттестации по итогам освоения дисциплины	9
6	Учебно-методическое и информационное обеспечение дисциплины	10
6.1	Основная литература	10
6.2	Дополнительная литература	11
6.3	Периодические издания	11
6.4	Интернет-ресурсы	11
6.5	Нормативные документы	11
6.6	Учебно-методическое обеспечение самостоятельной работы аспиранта	12
7	Материально-техническое обеспечение дисциплины	12
	Лист согласования рабочей программы дисциплины	13
	Дополнения и изменения в рабочей программе дисциплины	14

	НГТУ
	Рабочая программа дисциплины
СК-РП-15.1-04-22	Рабочая программа дисциплины
	«Механика жидкости, газа и плазмы»

1 Цель и задачи освоения дисциплины

Цель освоения дисциплины: формирование и развитие у аспирантов знаний и умений в области решения нелинейных задач механики сплошных сред, и смежных областей численными методами; овладение математическими моделями и методами численного решения нелинейных задач механики жидкости, газа и плазмы, позволяющими выпускнику успешно работать в различных областях профессиональной деянаучноисследовательской, проектной тельности: производственнотехнологической с применением современных компьютерных технологий; изучение метода конечных элементов как основного расчетного метода, применяемого при описании процессов и явлений, сопровождающих течения однородных и многофазных сред при механических, тепловых, электромагнитных и прочих воздействиях, а также происходящих при взаимодействии текучих сред с движущимися или неподвижными телами.

Задачи:

- формирование навыков в области построения и исследования математических моделей для описания параметров потоков движущихся сред в широком диапазоне условий;
- изучение основных методов к постановке и проведению экспериментальных исследований течений и их взаимодействия с телами, интерпретации экспериментальных данных с целью прогнозирования и контроля природных явлений и технологических процессов, включающих движения текучих сред, а также разработки перспективных космических, летательных и плавательных аппаратов.

2 Место дисциплины в структуре программы аспирантуры

Дисциплина (модуль) «Механика жидкости, газа и плазмы» включена в блок обязательных дисциплин, направленных на подготовку к сдаче кандидатского экзамена.

Дисциплина базируется на знаниях, полученных аспирантами в результате освоения образовательной программы высшего образования (магистратура, специалитет).

Наименование блока	Семестр, в	Тр	Трудоемкость дисциплины				
	котором	Зачетные	Зачетные Часы				
	преподается	единицы	Общая Р том инопо			стации	
	дисциплина	одинцы		Аудиторная	CPO		
Обязательная	6	3	108	24	84		
дисциплина	Ů	3	100	2 1	01		
ИТОГО		3	108	24	84	Экзамен	

Версия: 1.0	Без подписи документ действителен 3 суток после распечатки. Дата и время распечатки:	КЭ:	УЭ №	Стр. 4 из 14

3 Структура и содержание дисциплины (модуля)

Общая трудоемкость дисциплины составляет 3 зачетные единицы (108 часов).

3.1 Структура дисциплины (модуля)

Дисциплина преподается в 6 семестре.

		Наименование	Объем учебной работы (в часах)						Вид итогового	
N	№ Всего Всего Из аудиторных Сам.			контроля						
П/	/п			аудит.	Лекц.	Лаб.	Прак.	КСР.	работа	
1	1	Механика жидко- сти, газа и плазмы	108	24	24	-	-	-	84	Экзамен

3.2 Содержание дисциплины (модуля)

3.2.1 Разделы дисциплины (модуля) и виды занятий

№ раздела	Наименование раздела Дисциплины		ы учебн (оемкос	Самостоятельная работа (СР)		
			Лаб.	Пр.	КСР	
1	1 Основные понятия. Кинематика сплошных сред		-	ı	-	17
2	Основные понятия и уравнения динамики и термодинамики	5	-	1	-	17
3	Модели жидких и газообразных сред. Поверхности разрыва в течениях жидкости, газа и плазмы	5	1	-	-	17
4	Гидростатика. Движение идеальной не- сжимаемой жидкости	5	-	1	-	17
5 Движение вязкой жидкости. Теория пограничного слоя. Турбулентность		4	-	- 1	-	16
	ИТОГО:	24	-	-		84

Версия: 1.0	Без подписи документ действителен 3 суток после распечатки. Дата и время распечатки:	КЭ:	УЭ №	Стр. 5 из 14

СК-РП-15.1-04-22

НГТУ

Рабочая программа дисциплины

Рабочая программа дисциплины «Механика жидкости, газа и плазмы»

3.2.2 Содержание разделов дисциплины (модуля)

№	Наименование	Содержание раздела	Форма прове-
п/п	раздела (темы)	(темы)	дения занятий
1	2	3	4
7	Основные понятия. Кинематика сплошных сред	Понятие сплошной среды. Микроскопические, статистические и макроскопические феноменологические методы описания свойств, взаимодействий и движений материальных сред. Области приложения механики жидкости, газа и плазмы. Механические модели, теоретическая схематизация и постановка задач, экспериментальные методы исследований. Основные исторические этапы в развитии механики жидкости и газа. Системы отсчета и системы координат. Лагранжевы и эйлеровы координаты. Инерциальные и неинерциальные системы отсчета в ньютоновской механике. Определения и свойства кинематических характеристик движения: перемещения, траектории, скорость, линии тока, критические точки, ускорение, тензор скоростей деформации и его инварианты, вектор вихря, потенциал скорости, циркуляция скорости, установившееся и неустановившееся движение среды.	Лекции
И М	основные понятия уравнения дина- ики и термоди- амики	Закон сохранения массы. Уравнение неразрывности в переменных Эйлера и Лагранжа. Условие несжимаемости. Многокомпонентные смеси. Потоки диффузии. Уравнения неразрывности в форме Эйлера для многокомпонентных смесей. Массовые и поверхностные, внутренние и внешние силы. Законы сохранения количества движения и моментов количества движения для конечных масс сплошной среды. Дифференциальные уравнения движения и момента количества движения сплошной среды. Работа внутренних поверхностных сил. Кинетическая энергия и уравнение живых сил для сплошной среды в интегральной и дифференциальной формах. Понятие о параметрах состояния, пространстве состояний, процессах и циклах. Закон сохранения энергии, внутренняя энергия. Уравнение притока тепла. Вектор потока тепла. Дифференциальные уравнения энергии и притока тепла. Законы теплопроводности Фурье. Различные частные процессы: адиабатический, изотермический и др. Обратимые и необратимые процессы. Совершенный газ. Цикл Карно. Диссипативная функция. Основные макроскопические механизмы диссипации. Понятие о принципе Онзагера. Уравнения состояния. Термоди-	Лекции

НГТУ

Рабочая программа дисциплины

СК-РП-15.1-04-22

Рабочая программа дисциплины «Механика жидкости, газа и плазмы»

			Wicaanika жидкости, газа и плазиы//	
F			намические потенциалы двухпараметрических сред.	
F	3	Молени жилких и	Модель идеальной жидкости. Уравнения Эйлера.	Лекции
	3	газообразных	Полные системы уравнений для идеальной, несжима-	o Torrigini
		-	емой и сжимаемой жидкостей. Начальные и гранич-	
			ные условия. Интегралы Бернулли и Коши-Лагранжа.	
			Явление кавитации. Теорема Томсона и динамиче-	
		и плазмы	ские теоремы о вихрях. Возникновение вихрей. Тео-	
			рема Бьеркнеса Модель вязкой жидкости. Линейно-	
			вязкая (ньютоновская) жидкость. Уравнения Навье-	
			Стокса. Полные системы уравнений для вязкой не-	
			сжимаемой и сжимаемой жидкостей. Начальные и	
			граничные условия. Диссипация энергии в вязкой	
			теплопроводной жидкости. Применение интеграль-	
			ных соотношений к конечным объемам среды при	
			установившемся движении. Теория реактивной тяги и	
			теория идеального пропеллера. Поверхности слабых и	
			сильных разрывов.	
		Гидростатика.	Равновесие жидкости и газа в поле потенциальных	Лекции
		Движение иде-	массовых сил. Закон Архимеда. Равновесие и устой-	
		альной несжима-	чивость плавающих тел и атмосферы. Общая теория	
		емой жидкости	непрерывных потенциальных движений несжимаемой	
			жидкости. Свойства гармонических функций. Много-	
			значность потенциала в многосвязных областях. Ки-	
			нематическая задача о произвольном движении твер-	
			дого тела в неограниченном объеме идеальной не-	
			сжимаемой жидкости. Энергия, количество движения	
			и момент количества движения жидкости при движе-	
			нии в ней твердого тела. Движение сферы в идеальной	
			жидкости. Силы воздействия идеальной жидкости на	
			тело, движущееся в безграничной массе жидкости).	
			Основы теории присоединенных масс. Парадокс Да-	
			ламбера. Плоские движения идеальной жидкости.	
			Функция тока. Применение методов теории аналити-	
			ческих функций комплексного переменного для ре-	
			шения плоских задач гидродинамики и аэродинамики.	
			Стационарное обтекание жидкостью цилиндра и про-	
			филя. Формулы Чаплыгина и теорема Жуковского.	
			Правило Жуковского и Чаплыгина определения цир-	
			куляции вокруг крыльев с острой задней кромкой. Не-	
			стационарное обтекание профилей. Плоские задачи о	
			струйных течениях жидкости. Обтекание тел с отры-	
			вом струй. Схемы Кирхгофа, Эфроса и др. Определе-	
			ние поля скоростей по заданным вихрям и источни-	
			кам. Формулы Био-Савара. Прямолинейный и кольце-	
			вой вихри. Законы распределения давлений, силы,	
			обуславливающие вынужденное движение прямоли-	
	cua.	1 0 Faz nadnucu davyyaum da	ействителен 3 суток после распечатки. Дата КЭ. УЭ Мо	Cmn 7 112 14

		нейных вихрей в плоском потоке. Постановка задачи и основные результаты теории крыла конечного размаха. Несущая линия и несущая поверхность. Постановка задачи Коши-Пуассона о волнах на поверхности тяжелой несжимаемой жидкости). Гармонические волны.	
5	Движение вязкой жидкости. Теория пограничного слоя. Турбулентность	Ламинарное движение несжимаемой вязкой жидкости. Течения Куэтта и Пуазейля. Течение вязкой жидкости в диффузоре. Диффузия вихря. Приближения Стокса и Озеена. Задача о движении сферы в вязкой жидкости в постановке Стокса. Ламинарный пограничный слой. Задача Блазиуса. Интегральные соотношения и основанные на их использовании приближенные методы в теории ламинарного пограничного слоя. Явление отрыва пограничного слоя. Устойчивость пограничного слоя. Теплообмен с потоком на основе теории пограничного слоя. Турбулентность. Опыт Рейнольдса. Уравнения Рейнольдса. Турбулентный перенос тепла и вещества. Полуэмпирические теории турбулентности. Профиль скорости в пограничном слое. Логарифмический закон. Прямое численное решение уравнений гидромеханики при наличии турбулентности. Свободная и вынужденная конвекция. Приближение Буссинеска. Линейная неустойчивость подогреваемого плоского слоя и порог возникновения конвекции. Понятие о странном аттракторе.	Лекции

3.3 Практические занятия

Учебным планом не предусмотрено.

3.4 Лабораторные работы

Учебным планом не предусмотрено.

3.5 Самостоятельная работа аспиранта при изучении разделов дисциплины

Самостоятельная работа аспиранта при изучении дисциплины «Механика жидкости, газа и плазмы» составляет 84 часа.

В ходе самостоятельной работы аспирант:

- изучает материалы, не освещенные в лекциях;
- готовится к экзамену.

Версия: 1.0	Без подписи документ действителен 3 суток после распечатки. Дата и время распечатки:	КЭ:	УЭ №	Стр. 8 из 14

НГТУ Рабочая программа дисциплины СК-РП-15.1-04-22 Рабочая программа дисциплины «Механика жидкости, газа и плазмы»

$N_{\underline{0}}$	Вопросы, выносимые на самостоятельное изучение	Кол-во ча-
раздела	раздела	
1	2	3
1	Точки зрения Эйлера и Лагранжа при изучении движения сплошных сред	17
2	Второй закон термодинамики. Энтропия и абсолютная температура. Некомпенсированное тепло и производство энтропии. Неравенство диссипации, тождество Гиббса.	17
3	Разрывы сплошности. Условия на поверхностях сильного разрыва в материальных средах и в электромагнитном поле. Тангенциальные разрывы и ударные волны.	17
4	Фазовая и групповая скорость. Дисперсия волн. Перенос энергии прогрессивными волнами. Теория мелкой воды. Уравнения Буссинеска и Кортевега-де-Вриза. Нелинейные волны. Солитон.	17
5	Движение жидкости и газа в пористой среде. Закон Дарси. Система дифференциальных уравнений подземной гидрогазодинамики. Неустановившаяся фильтрация газа. Примеры точных автомодельных решений.	16
	ИТОГО:	84

4 Образовательные технологии

При освоении дисциплины «Механика жидкости, газа и плазмы» используются следующие образовательные технологии:

- активные (лекции);
- информационные (анализ и обзор источников информации);
- компьютерные (виртуальные и сетевые интернет-технологии),
- информационно-коммуникативные (компьютеры, телекоммуникационные сети),
- коммуникативные (обсуждение проблем на аудиторных занятиях, круглые столы, диспуты, участие в аспирантских научных и научно-практических конференциях),
- проблемные задания аспирантам, и их представление, разбор конкретных ситуаций.

5 Оценочные средства для текущего контроля успеваемости и промежуточной аттестации по итогам освоения дисциплины

По итогам освоения дисциплины аспирантом сдается экзамен.

Экзамен оценивается по системе: отлично, хорошо, удовлетворительно, неудовлетворительно.

bii tibopiii tiibiio.		
Отлично	полный грамотный ответ по всем трем вопросам, содержащий примеры, в том числе соот-	
	ветствующие теме научно-исследовательской деятельности соискателя.	
Хорошо	правильный грамотный ответ, но:	
	а) требующий уточнения по одному из заданных вопросов;	
	б) при наличии одного - двух недочетов;	
	в) допущена одна негрубая ошибка.	
Удовлетворительно	правильный грамотный ответ, но:	

Версия: 1.0	Без подписи документ действителен 3 суток после распечатки. Дата и время распечатки:	КЭ:	УЭ №	Стр. 9 из 14

MAT AN	НГТУ
	Рабочая программа дисциплины
СК-РП-15.1-04-22	Рабочая программа дисциплины
	«Механика жидкости, газа и плазмы»

	а) требующий уточнений по всем вопросам; б) допущена грубая ошибка; в) при наличии более двух недочетов; г) на теоретические вопросы даны исчерпывающие ответы, но отсутствуют примеры, ил-
	люстрирующие соискателем понимание сути вопросов.
Неудовлетворительно	а) неправильные ответы на два и более вопросов билета; б) когда число ошибок превосходит норму, при которой может быть выставлена положи-
	тельная оценка.

Текущий контроль освоения материала по каждому разделу дисциплины осуществляется тестированием.

Образцы оценочных средств для проведения текущего контроля в виде тестов

Тесты к разделу 1:

Вопрос 1: Понятие сплошной среды.

Вопрос 2: Микроскопические, статистические и макроскопические феноменологические методы описания свойств, взаимодействий и движений материальных сред.

Тесты к разделу 2:

Вопрос 1: Закон сохранения массы.

Вопрос 2: Уравнение неразрывности в переменных Эйлера и Лагранжа.

Тесты к разделу 3:

Вопрос 1: Модель идеальной жидкости.

Вопрос 2: Уравнения Эйлера.

Тесты к разделу 4:

Вопрос 1: Равновесие жидкости и газа в поле потенциальных массовых сил.

Вопрос 2: Закон Архимеда.

Тесты к разделу 5:

Вопрос 1: Ламинарное движение несжимаемой вязкой жидкости.

Вопрос 2: Течения Куэтта и Пуазейля.

6 Учебно-методическое и информационное обеспечение дисциплины

6.1 Основная литература

No	Автор(ы)	Заглавие	Издательство,	Назначение, вид	Кол-во экз.
Π/Π			год издания	издания, гриф	в библ-ке
1.	2	3	4	5	6
1	Седов Л.И	Механика сплошной сре-	СПб МГУ:	Учебник	21
		ды.	Лань, 2004		
2	Лойцянский	Механика жидкости и газа	Дрофа, 2003	Учебник	2

Версия: 1.0	Без подписи документ действителен 3 суток после распечатки. Дата и время распечатки:	КЭ:	УЭ №	Стр. 10 из 14

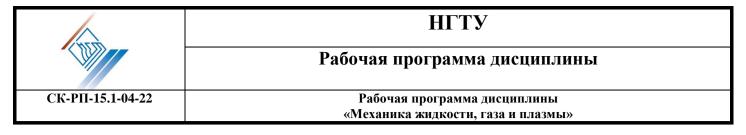
	Л.Г.				
3	Димитри-	Механика сплошной сре-	Изд-во МГТУ	Учебное пособие	4
	енко Ю.И.	ды.	им.Н.Э.Баума		
			на, 2013		
4	Ландау	Теоретическая физика:	Наука, 1986	Учебное пособие	4
	Л.Д., Лиф-	Гидродинамика.	-		
	шиц Е.М.				

6.2 Дополнительная литература

$N_{\underline{0}}$	Автор(ы)	Заглавие	Издательство,	Назначение, вид	Кол-во экз.
Π/Π			год издания	издания, гриф	в библ-ке
1	Абрамо-	Прикладная газовая дина-	Наука, 1991.	Учебник для вузов	5
	вич Г.Н.	мика В 2-х ч.			
2	Уизем Дж.	Линейные и нелинейные	Мир, 1977	Монография	1
		волны			

6.3 Периодические издания

- Известия РАН
- Механика жидкости и газа
- Метеорология и гидрология
- Морской гидрофизический журнал
- Фундаментальная и прикладная гидрофизика


6.4 Интернет-ресурсы

- Журнал «Фундаментальная и прикладная математика» http://mech.math.msu.su /~fpm/rus/contents.htm
- Математический сборник http://www.mathnet.ru/php/archive.phtml?jrnid=sm& wshow= contents1&option_lang=rus&ysclid=1445yvoa3o

6.5 Нормативные документы

- Федеральные государственные требования к структуре программ подготовки научных и научно-педагогических кадров в аспирантуре - приказ Минобрнауки России от 20.10.2021 г. № 951.
- Паспорт научной специальности 1.1.9 «Механика жидкости, газа и плазмы», разработанный экспертами ВАК Минобрнауки России в рамках Номенклатуры научных специальностей, утвержденной приказом Минобрнауки России от 24.02.2021 г. № 118.

Версия: 1.0	Без подписи документ действителен 3 суток после распечатки. Дата и время распечатки:	КЭ:	УЭ №	Стр. 11 из 14

6.6 Учебно-методическое обеспечение самостоятельной работы аспиранта

Используются следующие виды самостоятельной работы аспиранта: в читальном зале библиотеки, в учебных кабинетах, компьютерных классах с доступом к ресурсам Интернет и в домашних условиях.

Порядок выполнения самостоятельной работы соответствует программе курса и контролируется в ходе лекционных занятий.

Самостоятельная работа подкрепляется учебно-методическим и информационным обеспечением, включающим рекомендованные монографии, учебники и учебнометодические пособия, периодическую литературу, а также конспекты лекций.

7 Материально-техническое обеспечение дисциплины

Наименование специаль- ных помещений и поме- щений для самостоятель- ной работы	Оснащенность специальных помещений и помещений для самостоятельной работы	Перечень лицензионного программ- ного обеспечения. Реквизиты под- тверждающего документа
Лекционные занятия — мультимедийный класс, лекционная аудитория а.1223 Самостоятельная работа -	Мультимедийные средства: проектор, настенный экран. 15 персональных компьютеров в составе локальной вычислительной сети, подключенной к Internet (30 Мбит/с). 36 персональных компьютеров.	- Microsoft Windows 7 (подписка DreamSpark Premium, договор №Tr113003 от 25.09.14) - Gimp 2.8 (свободное ПО, лицензия GNU GPLv3); - Microsoft Office Professional Plus 2007
залы электронных информационных ресурсов (Электронные классы) НТБ а.2210, 6119, 6162. Читальные залы а. 2202, 2203 - компьютерный класс ИВЦ а.6142	Доступ к библиотечному фонду НГТУ. Доступ в Internet через локальную сеть 30 Мбит/с.	(лицензия № 42470655); - Ореп Office 4.1.1 (свободное ПО, лицензия Арасhe License 2.0) - Аdobe Acrobat Reader (FreeWare); - 7-zip для Windows (свободнораспространяемое ПО, лицен-зиея GNU LGPL); - Реферативные наукометрические базы (eLIBRARY.RU, Web of Science, Scopus), электронные библиотечные системы (издательства «Инженерные науки», «Лань», «Машиностроение», «Информатика», «НЭИКОН») Автоматизированная информационно-библиотечная система (АИБС) «МАРК-SQL 1.14», ЗАО «НПО «ИНФОРМ-СИСТЕМА» с 20 октября 2014 (Договор № 069/2014-А/О).

	НГТУ
	Рабочая программа дисциплины
СК-РП-15.1-04-22	Рабочая программа дисциплины
	«Механика жидкости, газа и плазмы»

ЛИСТ согласования рабочей программы

Corstac	ования расочеи програ	AINTINI DI
Группа научных специальностей:	1.1 Математика и механ	ника
Научная специальность	1.1.9. Механика жидко	сти, газа и плазмы
Дисциплина: Механика жидкости Форма обучения: очная Учебный год 2022 - 2023	, газа и плазмы	
РЕКОМЕНДОВАНА кафедрой <u>«П</u> протокол № 7 от "18" марта 2022 г	-	
Ответственный исполнитель, завед	цующий кафедрой <u>«При</u>	кладная математика»
д.фм.н., профессор	А.А. Куркин	18.03.2022
Автор: <u>д.фм.н., профессор</u>	А.А. Куркин расшифровка подписи	18.03.2022
СОГЛАСОВАНО:		
И.о. декана факультета подготовки		-
подпись	Е.Л. Трубоч расшифровка подписи	<u>ткина</u> 18.03.2022
	•	

Версия: 1.0 Без подписи документ деиствителен 3 суток после распечатки. Дата и время распечатки:	Y∃ № Cmp. 13 u3 14
--	----------------------

НГТУ Рабочая программа дисциплины Рабочая программа дисциплины «Механика жидкости, газа и плазмы» Дополнения и изменения в рабочей программе дисциплины на 20 /20 уч.г. Внесенные изменения на 20 /20 учебный год **УТВЕРЖДАЮ** Проректор по научной работе (подпись, расшифровка подписи) 20... г В рабочую программу вносятся следующие изменения: 1); 2) или делается отметка о нецелесообразности внесения каких-либо изменений на данный учебный год

Декан ФСВК

наименование факультета (института, где реализуется данное направление) личная подпись расшифровка подписи дата