
#### МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

# ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Р. Е. АЛЕКСЕЕВА» федеральный опорный вуз

Кафедра "Электроэнергетика, электроснабжение и силовая электроника"

## РАСЧЕТ ПОКАЗАТЕЛЕЙ ИНТЕНСИВНОСТИ ВОЗДЕЙСТВИЯ ЭЛЕКТРОМАГНИТНОГО ПОЛЯ ЭЛЕКТРИЧЕСКИХ ПОДСТАНЦИЙ

Методические указания к выполнению расчетной части в ВКР для бакалавров и магистров очной и заочной форм обучения по направлениям подготовки 140400 «Электроэнергетика и электротехника», 140100 «Теплоэнергетика и теплотехника»



Нижний Новгород 2020

Составители: О.В. Маслеева, Е.Н. Соснина, Р.Ш. Бедретдинов

УДК 621.3: 537.8 (075.5)

Расчет показателей интенсивности воздействия электромагнитного поля электрических подстанций: метод. указания к выполнению расчетной части в ВКР для бакалавров и магистров очной и заочной форм обучения по направлениям подготовки 140400 «Электроэнергетика и электротехника», 140100 «Теплоэнергетика и теплотехника» / НГТУ им. Р.Е. Алексеева; сост.: О.В. Маслеева, Е.Н. Соснина, Р.Ш. Бедретдинов. — Нижний Новгород, 2020. — 19 с.

Изложены краткие сведения из теории электромагнитного поля и выявлены его источники на электрических подстанциях. Приведена информация по влиянию и оценке показателей интенсивности воздействия электромагнитного поля на живые организмы. Даны задания к работе и порядок ее выполнения, указания к составлению отчета.

Методические указания предназначены для студентов дневного и заочного обучения.

Редактор Э.Б. Абросимова

Подп. к печ. 18.05.2018. Формат  $60x84^{-1}/_{16}$ . Печать офсетная. Бумага газетная. Усл. печ. л. 2,5. Тираж 100 экз. Заказ.

Нижегородский государственный технический университет им. Р.Е.Алексеева. Типография НГТУ, 603950. Нижний Новгород, ул. Минина, 24.

© Нижегородский государственный технический университет им. Р. Е. Алексеева, 2018

### 1. ЦЕЛЬ РАБОТЫ

Целью работы является:

- изучение источников электромагнитного поля (ЭМП) в энергетике;
- изучение показателей, характеризующих электромагнитное поле;
- получение навыков по нормированию электрического и магнитного поля согласно СанПиН 2.2.4.3359-16 «Санитарно-эпидемиологические требования к физическим факторам на рабочих местах»;
- освоение методики расчета напряженности электрического и магнитного поля на главной понизительной подстанции (ГПП).

### 2. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

## 2.1. Источники электромагнитного поля в электроэнергетике

Основными источниками электромагнитного поля промышленной частоты на ГПП являются силовые трансформаторы, высоковольтные отделители, разъединители, выключатели, воздушные линии (рис. 1).



Рис. 1. Источники электромагнитного поля на ГПП

## 2.2. Воздействие электромагнитного поля на человека

Интенсивность воздействия ЭМП на организм человека характеризуется следующими показателями:

- частота (50 Гц);
- напряженность электрического поля E, кB/м;
- напряженность магнитного поля H, A/м;
- длительность и периодичность пребывания человека в зоне действия ЭМП, ч.;
  - емкостной ток через тело человека  $I_h$ , мкA.

Электрическое поле, создаваемое высоковольтными линиями и установками, оказывает неблагоприятное влияние на живые организмы. Наиболее чувствительны к электрическим полям копытные животные и человек в обуви, изолирующей его от земли. Копыто животных также является хорошим изолятором. В этом случае на изолированном от земли проводящем объемном теле наводится потенциал, зависящий от соотношения емкости тела на землю и на провода ЛЭП. Чем меньше емкость на землю (чем толще, например, подошва обуви), тем больше наведенный потенциал, который может составлять несколько киловольт и даже достигать 10 кВ.

При приближении тела к заземленному предмету (например, ноги или руки человека к травинке или веточке куста) происходит искровой разряд, сопровождаемый звуковым эффектом (потрескивание) с протеканием импульса тока через тело. Сопротивление в цепи разряда определяется переходным сопротивлением кожного покрова и сопротивлением травинки или веточки, составляющим несколько МОм на 1 м длины ветки. В этих условиях максимум импульса тока через человека может достигать 100-200 мкА.

Разряд вызывает неприятное ощущение укола. Такие импульсы тока безопасны для здоровья человека, но могут привести к вторичным травмам вследствие испуга и непроизвольного движения. Зафиксировано, что такой неожиданный укол подчас приводит к неспецифической травме — падению с высоты, ушибу рабочего, стоящего ниже, инструментом, выпавшим из руки рабочего, стоящего выше, и т.д. Укол может возникнуть даже при рукопожатии двух работающих в случае, если один из них находится в сухой обуви с изолирующей подошвой, а второй не имеет ее или в момент рукопожатия другая рука товарища касается металлической конструкции. Неприятные ощущения, связанные с непрерывно следующими друг за другом разрядами, приводят к тому, что копытные животные предпочитают не находиться на трассах высоковольтных ЛЭП и не пересекать их в летнее время.

Ток значительно возрастает, если тело приближается к хорошо заземленному металлическому предмету. В этом случае максимум импульса тока определяется только переходным сопротивлением кожи и может достигать единиц

и даже десятков ампер. Однако непосредственное воздействие и таких импульсов тока из-за малой их длительности неопасно.

Опасные воздействия тока могут произойти при приближении (соприкосновении) тела человека с изолированными от земли механизмами, например, с трактором на резиновом ходу. Емкость таких механизмов на провода линии и на землю значительно больше, чем у человека. По этой причине все механизмы, находящиеся в зоне повышенной напряженности поля воздушной линии, должны быть надежно заземлены, например, с помощью металлической цепи. Многочисленные исследования в области биологического воздействия ЭМП позволили определить наиболее чувствительные системы организма человека: нервную, иммунную, эндокринную и половую. Переменное электрическое поле вызывает нагрев тканей живых организмов как за счет переменной поляризации диэлектрика (сухожилий, хрящей, костей), так и за счет появления емкостных токов. Наиболее чувствительны к перегреву органы зрения, мозг, почки, желчный и мочевой пузырь. Известно, что превышение предельно допустимых норм показателей ЭМП может спровоцировать повышенный риск развития хронического лимфолейкоза, рака грудной железы, злокачественной меланомы кожи, опухоли центральной нервной системы, острого миелоидного лейкоза.

## 2.3. Нормирование электрического и магнитного поля

СанПиН 2.2.4.3359-16 «Санитарно-эпидемиологические требования к физическим факторам на рабочих местах» устанавливает санитарно-эпидемиологические требования к электрическому и магнитному полю промышленной частоты (50 Гц).

Оценка и нормирование электрических полей частотой 50  $\Gamma$ ц осуществляется по напряженности электрического поля (E) в кВ/м в зависимости от времени его воздействия на работающего за смену.

Предельно допустимый уровень (ПДУ) напряженности электрического поля частотой 50  $\Gamma$ ц на рабочем месте в течение всей смены устанавливается равным 5 кВ/м.

При напряженностях в интервале больше 5 до 20 кВ/м включительно допустимое время пребывания в электрическом поле T (ч) рассчитывается по формуле

$$T = (50/E) - 2, (1)$$

где E — напряженность электрического поля в контролируемой зоне, кB/м;

T — допустимое время пребывания в электрическом поле при соответствующем уровне напряженности, ч.:

- при напряженности свыше 20 до 25 кВ/м допустимое время пребывания в электрическом поле составляет 10 мин.;
- при напряженности электрического поля, превышающей ПДУ, требуется применение средств защиты;
- при напряженности электрического поля, превышающей 25 кВ/м, работа без средств индивидуальной защиты запрещается;

Допустимое время пребывания в электрическом поле может быть реализовано одноразово или дробно в течение рабочего дня. В остальное рабочее время необходимо находиться вне зоны влияния электрического поля или применять средства защиты.

Оценка и нормирование магнитного поля частотой 50  $\Gamma$ ц осуществляется по напряженности (H) в A/м или индукции (B) в мкTл для условий общего (на все тело) и локального (кисти рук, предплечье) воздействия в зависимости от времени пребывания работающего в переменном магнитном поле за смену. ПДУ воздействия магнитного поля частотой 50  $\Gamma$ ц приведены в табл. 1.

Таблица 1 ПДУ синусоидального (периодического) магнитного поля частотой 50 Гц

| пду синусоидального (периодического) магнитного поля частотой зо г ц |                                                                      |               |  |  |  |
|----------------------------------------------------------------------|----------------------------------------------------------------------|---------------|--|--|--|
| Время                                                                | Допустимые уровни магнитного поля $(H, A/м/B, мкТл)$ при воздействии |               |  |  |  |
| пребывания, ч                                                        | общем                                                                | локальном     |  |  |  |
| ≤ 1                                                                  | 1 600 / 2 000                                                        | 6 400 / 8 000 |  |  |  |
| 2                                                                    | 800 / 1 000                                                          | 3 200 / 4 000 |  |  |  |
| 4                                                                    | 400 / 500                                                            | 1 600 / 2 000 |  |  |  |
| 8                                                                    | 80 / 100                                                             | 800 / 1 000   |  |  |  |

Допустимое значение тока, длительно проходящего через человека и обусловленное воздействием электрического поля, как показали исследования и опыт работы в электроустановках, составляет примерно 50 мкА, что соответствует напряженности электрического поля 5 кВ/м. При таком токе человек не испытывает болевых ощущений.

К организации и проведению контроля уровней электрического и магнитного поля частотой 50 Гц предъявляются следующие требования:

- контроль уровней электрического и магнитного поля частотой 50 Гц должен осуществляться во всех зонах возможного нахождения человека при

выполнении им работ, связанных с эксплуатацией и ремонтом электроустановок;

- измерения напряженности электрического и магнитного поля частотой 50 Гц должны проводиться на высоте 0,5, 1,0 и 1,7 м от поверхности земли, пола помещения или площадки обслуживания оборудования и на расстоянии 0,5 м от оборудования и конструкций, стен зданий и сооружений.

## 2.4. Методика расчета электрического и магнитного поля

Вид на силовые трансформаторы ГПП 110/10 показан на рис. 2.



Рис. 2. Вид ГПП 110/10 кВ

В зоне действия высоковольтных установок потенциал человека относительно земли, а также ток, протекающий через человека, определятся вертикальной составляющей напряженности электрического поля.

Напряженность электрического поля определяется по формуле

$$E = \frac{CUh}{\sqrt{3}\pi\varepsilon_0} \left( \frac{1}{h^2 + x_2^2} - \frac{0.5}{h^2 + x_1^2} - \frac{0.5}{h^2 + x_3^2} \right),\tag{2}$$

где C – емкость единицы длины линии,  $\Phi/м$ ;

U – номинальное напряжение, кВ;

 $\varepsilon_0 = 8,85 \cdot 10^{-12} -$ электрическая постоянная,  $\Phi/м$ ;

h – высота от расчетной точки, м;

 $x_1$  – расстояние от первой фазы до расчетной точки, м;

 $x_2$  — расстояние от второй фазы до расчетной точки, м;

 $x_3$  — расстояние от третьей фазы до расчетной точки, м.

Емкость единицы длины линии:

$$C = \frac{24 \cdot 10^{-12}}{\lg\left(\frac{2 \cdot D}{d}\right)},\tag{3}$$

где D – расстояние между фазами, м;

d – диаметр провода, м.

Высота от расчетной точки до точки с максимальной напряженностью для силового трансформатора рассчитывают по формуле

$$h = H_{\rm T} - H_{\rm y},\tag{4}$$

где  $H_{\rm T}$  – высота трансформатора, м;

 $H_{\rm H} = 1,7$  м (высота человека).

Расчетные формулы приведены в табл. 2

Расчетная структурная схема показана на рис. 3.

Таблица 2

Расчетные формулы

| № расчет-<br>ной точки | Расчетные формулы                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| 1                      | $E_{\text{T1}} = \frac{CUh}{\sqrt{3}\pi\varepsilon_0} \left( \frac{1}{h^2 + \left(a + \frac{B}{2}\right)^2 + \left(\frac{b}{2} + \frac{L}{2} - D\right)^2} - \frac{0.5}{h^2 + \left(a + \frac{B}{2}\right)^2 + \left(\frac{b}{2} + \frac{L}{2}\right)^2} - \frac{0.5}{h^2 + \left(a + \frac{B}{2}\right)^2 + \left(\frac{b}{2} + \frac{L}{2} + D\right)^2} \right)$ $E_{\text{T2}} = \frac{CUh}{\sqrt{3}\pi\varepsilon_0} \left( \frac{1}{h^2 + \left(a + \frac{B}{2}\right)^2 + \left(\frac{b}{2} + \frac{L}{2} - D\right)^2} - \frac{0.5}{h^2 + \left(a + \frac{B}{2}\right)^2 + \left(\frac{b}{2} + \frac{L}{2}\right)^2} - \frac{0.5}{h^2 + \left(a + \frac{B}{2}\right)^2 + \left(\frac{b}{2} + \frac{L}{2} + D\right)^2} \right)$ |  |  |

Продолжение табл. 2

| Іродолжение табл. 2 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 1                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| 2                   | $E_{\text{T1}} = \frac{CUh}{\sqrt{3}\pi\varepsilon_0} \left( \frac{1}{h^2 + \left(a + \frac{B}{2}\right)^2 + \left(\frac{L}{2} - D\right)^2} - \frac{0.5}{h^2 + \left(a + \frac{B}{2}\right)^2 + \left(\frac{L}{2}\right)^2} - \frac{0.5}{h^2 + \left(a + \frac{B}{2}\right)^2 + \left(\frac{L}{2} + D\right)^2} \right)$ $E_{\text{T2}} = \frac{CUh}{\sqrt{3}\pi\varepsilon_0} \left( \frac{1}{h^2 + \left(a + \frac{B}{2}\right)^2 + \left(b + \frac{L}{2} - D\right)^2} - \frac{0.5}{h^2 + \left(a + \frac{B}{2}\right)^2 + \left(b + \frac{L}{2}\right)^2} \right)$                                                                                                    |  |  |  |
|                     | $-\frac{0.5}{h^2 + \left(a + \frac{B}{2}\right)^2 + \left(b + \frac{L}{2} + D\right)^2}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| 3                   | $E_{\text{T1}} = \frac{CUh}{\sqrt{3}\pi\varepsilon_0} \left( \frac{1}{h^2 + \left(a + \frac{B}{2}\right)^2} - \frac{0.5}{h^2 + \left(a + \frac{B}{2}\right)^2 + (D)^2} - \frac{0.5}{h^2 + \left(a + \frac{B}{2}\right)^2 + (D)^2} \right)$ $E_{\text{T2}} = \frac{CUh}{\sqrt{3}\pi\varepsilon_0} \left( \frac{1}{h^2 + \left(a + \frac{B}{2}\right)^2 + (b + L - D)^2} - \frac{0.5}{h^2 + \left(a + \frac{B}{2}\right)^2 + (b + L)^2} - \frac{0.5}{h^2 + \left(a + \frac{B}{2}\right)^2 + (b + L + D)^2} \right)$                                                                                                                                                          |  |  |  |
| 4                   | $E_{\text{T1}} = \frac{CUh}{\sqrt{3}\pi\varepsilon_0} \left( \frac{1}{h^2 + \left(a + \frac{B}{2}\right)^2 + \left(\frac{L}{2} - D\right)^2} - \frac{0,5}{h^2 + \left(a + \frac{B}{2}\right)^2 + \left(\frac{L}{2}\right)^2} \right) - \frac{0,5}{h^2 + \left(a + \frac{B}{2}\right)^2 + \left(\frac{L}{2} + D\right)^2} \right)$ $E_{\text{T2}} = \frac{CUh}{\sqrt{3}\pi\varepsilon_0} \left( \frac{1}{h^2 + \left(a + \frac{B}{2}\right)^2 + \left(b + \frac{3L}{2} - D\right)^2} - \frac{0,5}{h^2 + \left(a + \frac{B}{2}\right)^2 + \left(b + \frac{3L}{2}\right)^2} - \frac{0,5}{h^2 + \left(a + \frac{B}{2}\right)^2 + \left(b + \frac{3L}{2} + D\right)^2} \right)$ |  |  |  |

## Окончание табл.2

| OROII Iuiiii | le 1a011.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 1            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| 5            | $E_{\text{T}1} = \frac{CUh}{\sqrt{3}\pi\varepsilon_0} \left( \frac{1}{h^2 + \left(a + \frac{B}{2}\right)^2 + \left(a + \frac{L}{2} - D\right)^2} - \frac{0,5}{h^2 + \left(a + \frac{B}{2}\right)^2 + \left(a + \frac{L}{2}\right)^2} - \frac{0,5}{h^2 + \left(a + \frac{B}{2}\right)^2 + \left(a + \frac{L}{2} + D\right)^2} \right)$ $E_{\text{T}2} = \frac{CUh}{\sqrt{3}\pi\varepsilon_0} \left( \frac{1}{h^2 + \left(a + \frac{B}{2}\right)^2 + \left(a + b + \frac{3L}{2} - D\right)^2} - \frac{0,5}{h^2 + \left(a + \frac{B}{2}\right)^2 + \left(a + b + \frac{3L}{2}\right)^2} - \frac{0,5}{h^2 + \left(a + \frac{B}{2}\right)^2 + \left(a + b + \frac{3L}{2} + D\right)^2} \right)$ |  |  |  |
| 6            | $E_{\text{T1}} = \frac{CUh}{\sqrt{3}\pi\varepsilon_0} \left( \frac{1}{h^2 + \left(a + \frac{L}{2} - D\right)^2} - \frac{0.5}{h^2 + \left(a + \frac{L}{2}\right)^2} - \frac{0.5}{h^2 + \left(a + \frac{L}{2} + D\right)^2} \right)$ $E_{\text{T2}} = \frac{CUh}{\sqrt{3}\pi\varepsilon_0} \left( \frac{1}{h^2 + \left(a + b + \frac{3L}{2} - D\right)^2} - \frac{0.5}{h^2 + \left(a + b + \frac{3L}{2}\right)^2} - \frac{0.5}{h^2 + \left(a + b + \frac{3L}{2} + D\right)^2} \right)$ $-\frac{0.5}{h^2 + \left(a + b + \frac{3L}{2} + D\right)^2} \right)$                                                                                                                                  |  |  |  |

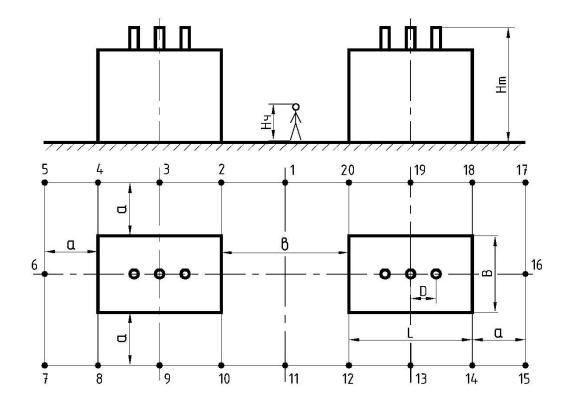



Рис. 3. Структурная схема расположения силовых трансформаторов

Оценка воздействия магнитного поля, создаваемого трансформаторным оборудованием, выполнена на основе коэффициентов пропорциональности между рабочим током проводников и максимальным значением напряженности магнитного поля:

$$H = \gamma \cdot I , \qquad (5)$$

где  $\gamma$  – коэффициент пропорциональности между рабочим током проводника и напряженностью магнитного поля ( $\gamma$  = 0,0893);

I – рабочий ток проводника, А.

Емкостной ток, проходящий через тело человека, находящегося в электрическом поле высоковольтных установок, рассчитывается по формуле

$$I_h = k \cdot E, \tag{6}$$

где  $I_h$  – емкостной ток, мкА;

k – постоянный множитель ( $k = 12 \Phi \cdot m/c$ );

E — напряженность электрического поля, кB/м.

## 3. ЗАДАНИЕ К РАБОТЕ

Рассчитать напряженность электрического и магнитного поля и емкостной ток, проходящий через тело человека, для заданного варианта (табл. 5). Рассчитанные значения сравнить с допустимыми величинами и сделать вывод.

Расчетные формулы для всех точек указаны в табл. 2.

Технические характеристики трансформаторов приведены в табл. 6. Отчет должен содержать:

- цель работы;
- схему расположения трансформаторов (рис. 3);
- исходные данные;
- расчет для 1 6 точек;
- результаты расчетов, представленные в виде табл. 3, 4;
- график изменения напряженности электрического поля (рис. 4);
- выводы.

#### 4. ПРИМЕР РАСЧЕТА

Напряжение U = 110 кB

Марка трансформатора - ТДН 16000 кВА.

Размеры трнасформатора:

- длина L=5845 мм, - ширина B=3570 мм, - высота  $H_{\rm T}=5390$  мм;

D = 1,23 м — расстояние между выводами высокого напряжения силового трансформатора;

I = 265 A - номинальный ток;

d = 11,4мм = 0,0114 м для АС-70 по табл. 7;

b = 6 м - расстояние между трансформаторами;

a = 3 м – расстояние от расчетной точки до силового трансформатора.

Высота от расчетной точки:

$$h = H_{\rm T} - H_{\rm q} = 5{,}39 - 1{,}7 = 3{,}69 \text{ M}$$

#### Расчетная точка 1.

Емкость единицы длины проводника:

С = 
$$\frac{24 \cdot 10^{-12}}{\lg\left(\frac{2 \cdot 1,23}{0.0114}\right)}$$
 = 10,28 · 10<sup>-12</sup>  $\frac{\Phi}{M}$ ;

$$\frac{CUh}{\sqrt{3}\pi\varepsilon_0} = \frac{10,28 \cdot 10^{-12} \cdot 110 \cdot 3,69}{\sqrt{3} \cdot \pi \cdot 8,85 \cdot 10^{-12}} = 86,8 \text{ kB} \cdot \text{m};$$

$$E_{\text{T}1} = 86,8 \cdot \left(\frac{1}{3,69^2 + \left(3 + \frac{3,57}{2}\right)^2 + \left(\frac{6}{2} + \frac{5,845}{2} - 1,23\right)^2} - \frac{0,5}{3,69^2 + \left(3 + \frac{3,57}{2}\right)^2 + \left(\frac{6}{2} + \frac{5,845}{2}\right)^2} - \frac{0,5}{3,69^2 + \left(3 + \frac{3,57}{2}\right)^2 + \left(\frac{6}{2} + \frac{5,845}{2} + 1,23\right)^2}\right) = 0,438 \frac{\text{kB}}{\text{M}};$$

$$E_{\text{T}2} = E_{\text{T}1} = 0,438 \text{ kB/M}$$

$$E_{\text{DT}1} = 0,438 + 0,438 = 0,876 \text{ kB/M}$$

#### Расчетная точка 2

$$E_{\text{T1}} = 86,8 \cdot \left(\frac{1}{3,69^2 + \left(3 + \frac{3,57}{2}\right)^2 + \left(\frac{5,845}{2} - 1,23\right)^2} - \frac{0,5}{3,69^2 + \left(3 + \frac{3,57}{2}\right)^2 + \left(\frac{5,845}{2}\right)^2} - \frac{0,5}{3,6^2 + \left(3 + \frac{3,57}{2}\right)^2 + \left(\frac{5,845}{2} + 1,23\right)^2}\right) = 0,538 \frac{\text{KB}}{\text{M}};$$

$$E_{\text{T2}} = 86,8 \cdot \left(\frac{1}{3,69^2 + \left(3 + \frac{3,57}{2}\right)^2 + \left(6 + \frac{5,845}{2} - 1,23\right)^2} - \frac{0,5}{3,69^2 + \left(3 + \frac{3,57}{2}\right)^2 + \left(6 + \frac{5,845}{2}\right)^2} - \frac{0,5}{3,69^2 + \left(3 + \frac{3,57}{2}\right)^2 + \left(6 + \frac{5,845}{2} + 1,23\right)^2}\right) = 0,242 \frac{\text{KB}}{\text{M}};$$

$$E_{\text{pt1}} = 0,538 + 0,242 = 0,780 \frac{\text{KB}}{\text{M}}.$$

Исходя из расположения расчетных точек на плане ГПП, можно определить, что точки 1 и 11 расположены симметрично, поэтому величины напряженности электрического поля будут одинаковыми. Аналогично расположены точки 2, 10, 12, 20 и т.д.

Результаты расчета напряженности электрического поля на территории ГПП представлены в табл.3 и на рис. 4.

Емкостной ток, проходящий через тело человека, рассчитан по формуле:

$$I_h = 12 \cdot E$$
.

Результаты расчета емкостного тока, проходящего через человека в землю для различных расчетных точек, приведены в табл. 3.

Таблица 3 Результаты расчета напряженности электрического поля на территории ГПП и емкостного тока, проходящего через тело человека

| Do отголица <del>д</del> |                                      | T T T                             |                                   |                |
|--------------------------|--------------------------------------|-----------------------------------|-----------------------------------|----------------|
| Расчетная                | $E_{\mathrm{T}1}$ , к $\mathrm{B/M}$ | $E_{\rm T2}$ , $\kappa {\rm B/M}$ | $E_{\rm pr}$ , $\kappa {\rm B/M}$ | $I_h$ , мк $A$ |
| точка                    |                                      | 12)                               | F-7                               | ,              |
| 1                        | 0,438                                | 0,438                             | 0,876                             | 10,5           |
| 2                        | 0,538                                | 0,242                             | 0,780                             | 9,4            |
| 3                        | 0,123                                | 0,134                             | 0,257                             | 3,1            |
| 4                        | 0,538                                | 0,079                             | 0,617                             | 7,4            |
| 5                        | 0,475                                | 0,053                             | 0,528                             | 6,3            |
| 6                        | 1,024                                | 0,059                             | 1,083                             | 13,0           |
| 7                        | 0,475                                | 0,053                             | 0,528                             | 6,3            |
| 8                        | 0,538                                | 0,079                             | 0,617                             | 7,4            |
| 9                        | 0,123                                | 0,134                             | 0,257                             | 3,1            |
| 10                       | 0,538                                | 0,242                             | 0,780                             | 9,4            |
| 11                       | 0,438                                | 0,438                             | 0,876                             | 10,5           |
| 12                       | 0,538                                | 0,242                             | 0,780                             | 9,4            |
| 13                       | 0,123                                | 0,134                             | 0,257                             | 3,1            |
| 14                       | 0,538                                | 0,079                             | 0,617                             | 7,4            |
| 15                       | 0,475                                | 0,053                             | 0,528                             | 6,3            |
| 16                       | 1,024                                | 0,059                             | 1,083                             | 13,0           |
| 17                       | 0,475                                | 0,053                             | 0,528                             | 6,3            |
| 18                       | 0,538                                | 0,079                             | 0,617                             | 7,4            |
| 19                       | 0,123                                | 0,134                             | 0,257                             | 3,1            |
| 20                       | 0,538                                | 0,242                             | 0,780                             | 9,4            |
| ПДУ, кВ/м                |                                      |                                   | 5                                 | 50             |

Напряженность магнитного поля:

$$H = \gamma \cdot I = 0.0893 \cdot 265 = 23.7 \text{ A/m},$$

Результаты расчета напряженности магнитного поля на территории ГПП и величина ПДУ представлены в табл. 4.

Результаты расчета напряженности магнитного поля

Таблица 4

| Попомотр | Трансформаторное оборудование |                 |  |
|----------|-------------------------------|-----------------|--|
| Параметр | Трансформатор 1               | Трансформатор 2 |  |
| γ        | 0,0893                        | 0,0893          |  |
| I, A     | 265                           | 265             |  |
| Н, А/м   | 23,7                          | 23,7            |  |
| ПДУ, А/м | 80                            | 80              |  |

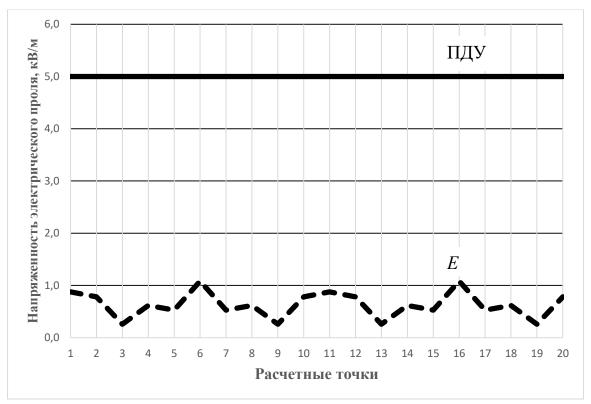



Рис. 4. Результаты расчета напряженности электрического поля на территории  $\Gamma\Pi\Pi$ 

#### Выводы:

- напряженность электрического поля на всех рабочих местах на территории ГПП не превышает в течение всей смены допустимый уровень 5 кВ/м;
- напряженность магнитного поля ниже допустимого значения 80 A/м при общем воздействии (на все тело);
- максимальное значение величины емкостного тока, проходящего через тело человека, составляет 13 мкА, не превышает максимального значения 50 мкА, поэтому не представляет опасности для обслуживающего персонала.

# СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ

- 1. СанПиН 2.2.4.3359-16. Санитарно-эпидемиологические требования к физическим факторам на рабочих местах. Новосибирск: Норматика, 2017. 68 с.
- 2. Проблема изучения влияния электромагнитных полей на здоровье человека. Итоги и перспективы / Ю. П. Пальцев [и др.] // Медицина труда и промышленная экология, 2013. № 6. С. 35–40.
- 3. Правила устройства электроустановок. Все действующие разделы 6 и 7 изданий. М.: КНОРУС, 2015. 491 с.
- 4. **Александров, Г. Н.** Передача электрической энергии / Г. Н. Александров. 2-е изд. СПб. : Изд-во Политехн. ун-та, 2009. 412 с.
- 5. **Александров, Г. Н.** Установки сверхвысокого напряжения и охрана окружающей среды / Г. Н. Александров. Л. : Энергоатомиздат, 1989. 357 с.
- 6. **Долин, П. А.** Основы техники безопасности в электроустановках: учеб. пособие для вузов. 2-е изд., перераб. и доп. / П. А. Долин. М. : Энергоатомиздат, 1984. 488 с.

# Таблица 5

Варианты заданий

|     |                |                           | <b>Б</b> арианты задании |          |         |              |
|-----|----------------|---------------------------|--------------------------|----------|---------|--------------|
| No  | Напряжение, кВ | Марка                     | Расстояние между         | Мах ток, | Марка   | Расстояние   |
| 71⊻ | •              | трансформатора            | трансформаторами $b$ , м | I, A     | провода | <i>a</i> , м |
| 1   | 110            | TMH-6300/110              | 7                        | 46       | AC-70   | 3,0          |
| 2   | 110            | ТДН-10000/110             | 9                        | 68       | AC-70   | 3,1          |
| 3   | 110            | ТДН-10000/110             | 10                       | 70       | AC-70   | 3,2          |
| 4   | 110            | ТДН-10000/110             | 8                        | 69       | AC-70   | 3,3          |
| 5   | 110            | ТДН-10000/110             | 11                       | 72       | AC-70   | 3,4          |
| 6   | 110            | ТДТН-10000/110            | 12                       | 78       | AC-70   | 3,5          |
| 7   | 110            | ТДТН-10000/110            | 13                       | 73       | AC-70   | 3,6          |
| 8   | 110            | ТДН-16000/110             | 11                       | 115      | AC-70   | 3,7          |
| 9   | 110            | ТДН-16000/110             | 12                       | 118      | AC-70   | 3,8          |
| 10  | 110            | ТДН-16000/110             | 13                       | 120      | AC-70   | 3,9          |
| 11  | 110            | ТДТН-16000/110            | 10                       | 16       | AC-70   | 4,0          |
| 12  | 110            | ТДТН-16000/110            | 9                        | 122      | AC-70   | 3,9          |
| 13  | 110            | ТРДН-25000/110            | 12                       | 184      | AC-70   | 3,1          |
| 14  | 110            | ТРДН-25000/110            | 13                       | 180      | AC-70   | 3,0          |
| 15  | 110            | ТРДН-25000/110            | 10                       | 185      | AC-70   | 3,2          |
| 16  | 110            | ТДТН-25000/110            | 9                        | 186      | AC-70   | 3,3          |
| 17  | 110            | ТДТН-25000/110            | 11                       | 190      | AC-70   | 3,4          |
| 18  | 110            | ТДТН-25000/110            | 14                       | 188      | AC-70   | 3,5          |
| 19  | 110            | ТРДН-32000/110            | 13                       | 235      | AC-95   | 3,6          |
| 20  | 110            | ТДН-40000/110             | 11                       | 294      | AC-120  | 3,0          |
| 21  | 110            | ТДН-40000/110             | 10                       | 290      | AC-120  | 3,5          |
| 22  | 110            | ТДТН-40000/110            | 12                       | 298      | AC-120  | 3,4          |
| 23  | 110            | ТДТН-40000/110            | 14                       | 296      | AC-120  | 3,1          |
| 24  | 110            | ТДТН-40000/110            | 15                       | 295      | AC-120  | 3,3          |
| 25  | 110            | ТРДН-63000/110            | 13                       | 463      | AC-185  | 4,5          |
| 26  | 110            | ТРДН-63000/110            | 14                       | 460      | AC-185  | 4,0          |
| 27  | 110            | ТДТН-63000/110            | 13                       | 468      | AC-185  | 4,3          |
| 28  | 110            | ТДТН-80000/110            | 16                       | 588      | AC-240  | 4,1          |
| 29  | 220            | АТДЦТН-<br>63000/220/110  | 17                       | 231      | AC-240  | 4,2          |
| 30  | 220            | АТДЦТН-<br>125000/220/110 | 19                       | 459      | AC-240  | 5,0          |

Таблица 6

Технические характеристики силовых трансформаторов

| №  | •                     | Размеры, мм |          |          | Межфазное рас- |
|----|-----------------------|-------------|----------|----------|----------------|
|    | Марка трансформатора  | длина, $L$  | ширина В | высота Н | стояние D, м   |
| 1  | 2                     | 3           | 4        | 5        | 6              |
| 1  | TMH-6300/110          | 5090        | 2685     | 5110     | 1,100          |
| 2  | ТДН-10000/110         | 5800        | 3500     | 5300     | 1,210          |
| 3  | ТДН-10000/110         | 5385        | 3320     | 4250     | 1,292          |
| 4  | ТДН-10000/110         | 4900        | 3400     | 5100     | 1,328          |
| 5  | ТДН-10000/110         | 5140        | 3224     | 5160     | 1,170          |
| 6  | ТДТН-10000/110        | 6400        | 3700     | 5300     | 1,157          |
| 7  | ТДТН-10000/110        | 5630        | 4600     | 4896     | 1,300          |
| 8  | ТДН-16000/110         | 5650        | 3600     | 5450     | 1,078          |
| 9  | ТДН-16000/110         | 5510        | 3500     | 5160     | 1,215          |
| 10 | ТДН-16000/110         | 5500        | 3350     | 5200     | 1,188          |
| 11 | ТДТН-16000/110        | 5840        | 4410     | 4880     | 1,350          |
| 12 | ТДТН-16000/110        | 5700        | 4450     | 5300     | 1,140          |
| 13 | ТРДН-25000/110        | 5900        | 4350     | 5300     | 1,084          |
| 14 | ТРДН-25000/110        | 6100        | 4300     | 5380     | 1,150          |
| 15 | ТРДН-25000/110        | 5710        | 4860     | 5335     | 1,650          |
| 16 | ТДТН-25000/110        | 6600        | 4600     | 6000     | 1,205          |
| 17 | ТДТН-25000/110        | 6050        | 4600     | 5100     | 1,450          |
| 18 | ТДТН-25000/110        | 6380        | 4800     | 5220     | 1,354          |
| 19 | ТРДН-32000/110        | 6200        | 3776     | 6200     | 1,564          |
| 20 | ТДН-40000/110         | 6500        | 4500     | 5700     | 1,277          |
| 21 | ТДН-40000/110         | 6250        | 4680     | 5680     | 1,322          |
| 22 | ТДТН-40000/110        | 6750        | 4730     | 6250     | 1,250          |
| 23 | ТДТН-40000/110        | 7200        | 4600     | 5400     | 1,146          |
| 24 | ТДТН-40000/110        | 6170        | 5140     | 5840     | 1,195          |
| 25 | ТРДН-63000/110        | 6730        | 4600     | 6700     | 1,234          |
| 26 | ТРДН-63000/110        | 6700        | 5100     | 6200     | 1,410          |
| 27 | ТДТН-63000/110        | 7080        | 4850     | 7400     | 1,331          |
| 28 | ТДТН-80000/110        | 8300        | 4800     | 7050     | 1,453          |
| 29 | АТДЦТН-63000/220/110  | 10500       | 5250     | 7350     | 2,160          |
| 30 | АТДЦТН-125000/220/110 | 11030       | 5360     | 8290     | 2,206          |

Таблица 7 Сечение и диаметр провода АС

| Сечение алюминий/сталь, мм <sup>2</sup> | Диаметр провода, мм | Токовая нагрузка, А |
|-----------------------------------------|---------------------|---------------------|
| 70/11                                   | 11.4                | 265                 |
| 95/16                                   | 13.5                | 330                 |
| 120/19                                  | 15.2                | 390                 |
| 150/19                                  | 16.8                | 45                  |
| 185/24                                  | 18.9                | 520                 |
| 240/32                                  | 21.6                | 605                 |
| 300/39                                  | 24.0                | 710                 |
| 400/51                                  | 27,5                | 825                 |