МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Р.Е. АЛЕКСЕЕВА»

Кафедра «Производственная безопасность, экология и химия»

Методические указания для выполнения практических работ по дисциплине «Экология»

ПЛАТА ЗА ВЫБРОСЫ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ СТАЦИОНАРНЫМИ УСТАНОВКАМИ

Направление подготовки

20.03.01 «Техносферная безопасность» 19.03.01, 19.04.01 «Биотехнология» 11.03.04, 11.04.04 «Электроника и наноэлектроника»

Квалификация (степень) Бакалавр Форма обучения Очная, заочная

г. Нижний Новгород 2016 г.

Разработчик методических указаний для выполнении практических работ по дисциплине «Экология»
к.т.н., доцент Смирнова В.М.
Кафедра « <i>Производственная безопасность</i> , экология и химия» Дата, подпись
Методические указания для выполнения практических работ по дисциплинам: «Экология»
рассмотрены на заседании кафедры«Производственная безопасность, экология и химия»
Протокол № от « » 20 г.
Заведующий кафедрой д.х.н., профессор Наумов В.И
Дата, подпись
Методические указания для выполнения практических работ по дисциплине «Экология» согласованы с председателем методической комиссии по направлению подготовки (или председателем предметной комиссии)
Доцент, к.т.н. Елькн А.Б.
дата, подпись

Основополагающим принципом законодательства Российской Федерации в области охраны окружающей среды является принцип платности природопользования, в соответствии с которым негативное воздействие на окружающую среду является платным. Статьей 16 Федерального Закона от 10.01.2002 г. № 7—ФЗ «Об охране окружающей среды» определены виды негативного воздействия на окружающую среду.

Студенты, изучающие экологические дисциплины, должны овладеть способами проведения расчётов платы за различные виды загрязнений окружающей среды. Этому посвящено данное методическое указание.

В первой главе рассматриваются общие принципы платы за загрязнение окружающей среды. Во второй главе изложены методы расчётов платежей за выбросы в атмосферу загрязняющих веществ из горячих стационарных источников. Данное методическое указание может быть использовано преподавателями и студентами при проведении аудиторных практических занятий по экологическим дисциплинами, а также студентами очной и заочной формы обучения при выполнении контрольных работ ВКР соответствующим разделам. В методических указаниях наряду с изложением основных принципов и методов расчётов приводятся примеры выполнения этих расчётов, а в конце даны варианты заданий для выполнения индивидуальных работ.

Методическое указание рекомендуется в помощь студентам всех направлений подготовки при выполнении практических заданий по экологии и экологических расчетов в курсовых работах и выпускных квалификационных работах.

1 РАСЧЁТ ПЛАТЕЖЕЙ ЗА ЗАГРЯЗНЕНИЕ ОКРУЖАЮЩЕЙ СРЕДЫ ВЫБРОСАМИ И СБРОСАМИ

1.1 Общие положения

При проведении различных технологических циклов на промышленном предприятии и транспорте появляются вещества, поступающие в окружающую среду и вызывающие загрязнение. Такие вещества, выбрасываемые в атмосферный воздух через дымовые трубы, системы вентиляции, а также поступающие в атмосферный воздух другими путями (например, при горении свалок), называются выбросами. Вещества же, поступающие в различные водоёмы со сточными водами, называются сбросами. В широком понимании они относятся к отходам, но чаще под отходами понимают твёрдые отходы производства и отходы потребления, размещаемые на земле. Ниже рассматриваются платежи за выбросы и сбросы загрязняющих веществ.

Масса загрязняющего вещества в единице объёма выбрасываемых газов или сточных вод называется концентрацией данного вещества и обозначается буквой «С». Количество загрязняющего вещества, отводимого с газами или сточными водами в единицу времени, называется соответственно фактическим выбросом или сбросом («М») и измеряется в граммах указанного вещества за секунду или в тоннах за квартал либо за год.

Для каждого объекта-загрязнителя устанавливается *предельно допустимое значение выбросов* (ПДВ) или *сбросов* (ПДС) по каждому загрязняющему веществу.

1.2 Расчётные зависимости и коэффициенты

Плату за выбросы или сбросы определяют по фактическим годовым или квартальным массам каждого загрязняющего вещества и потом суммируют для всех веществ. Данный способ расчёта платы (а значит, и величина) зависит от соотношения между фактическим и разрешённым загрязнением. Этот принцип («загрязнитель платит за всё и особо – за сверхлимитные загрязнения») принят во всём мире, а в России – с 1992 г. с вступлением в действие Закона «Об охране окружающей природной среды» и постановления Правительства РФ от

28.06.1992 № 632, которым установлен механизм платежей. Следует иметь в виду, что после принятия в 2002 г. нового Федерального Закона «Об охране окружающей среды» был период (с апреля 2002 г. до середины 2003 г.), когда платежи были приостановлены Верховным Судом РФ. Потребовалось принятие нового постановления Правительства РФ (от 12.06.2003 № 344), в котором установлены новые цены и коэффициенты, но принцип расчёта оставлен прежним. Кроме того, 1 июля 2005 г. постановлением Правительства РФ № 410 были внесены изменения к постановлению № 344, уточняющие нормативы платы по отдельным загрязняющим веществам.

Перед выполнением расчётов необходимо сопоставить величины фактических выбросов, сбросов или отходов с разрешёнными величинами. Здесь могут встретиться три случая.

Первый случай, когда фактическая масса загрязнителя (за год или квартал) не превышает допустимой. Допустимые массы по закону 1992 г. и ГОСТ назывались предельно допустимыми выбросами (ПДВ) или сбросами (ПДС), а по закону 2002 г. – нормативами допустимых выбросов (НДВ) или сбросов (НДС). Вся техническая документация до сих пор придерживается терминов ГОСТ – ПДВ и ПДС. В дальнейшем в пособии применяются эти же термины. Для случаев $M_{\phi i} \leq M_{\Pi Д B i}$ (или $M_{\Pi Д C i}$) расчёт платы за год ведётся по формуле:

$$\Pi_{i} = M_{\phi i} \coprod_{i} \cdot K_{\scriptscriptstyle H} \cdot K_{\scriptscriptstyle 9} \cdot K_{\scriptscriptstyle \Gamma} \cdot K_{\scriptscriptstyle T}, \text{ руб./год,}$$
 (1.1)

где $M_{\varphi i}$ – фактическая масса загрязняющего вещества, т/год;

 $K_{\text{и}}$ — коэффициент индексации, учитывающий уровень изменения цен в стране (был принят равным 1 в 1992 г. и в 2003 г., когда устанавливались цены), в 2004 г. K_3 = 1,1; в 2005 г. K_3 = 1,2);

 K_9 – коэффициент экологической ситуации, учитывающий общее состояние окружающей среды в данном месте, определяется по табл. 5, 6;

 K_{Γ} — дополнительный экологический коэффициент для городов (с 2003 г. принят равным 1,2);

 $K_{\scriptscriptstyle T}$ — территориальный коэффициент для особо охраняемых и курортных территорий (равен 2).

По формуле (1.1) производятся расчёты платы за загрязнения среды выбросами передвижных источников, но вместо фактической величины выбросов $M_{\phi i}$ подставляется расход топлива T_i .

Часто оказывается, что предприятие не в состоянии выдержать нормативы ПДВ или ПДС по объективным причинам. Например, в месте выброса или сброса концентрация загрязняющего вещества превышает ПДК, и тогда «допустимое дополнительное загрязнение» теряет смысл.

Либо (второй случай) предприятие находится в стадии модернизации и пока не может уложиться в нормативы. В этом случае устанавливаются временно согласованные выбросы или сбросы (ВСВ или ВСС) сроком на 5 лет. Если фактические загрязнения больше ПДВ (или ПДС), но не превышают ВСВ или ВСС, т. е. ($M_{\Pi Л B i} < M_{\phi i} \le M_{B C B i}$), то расчёт ведется по формуле (1.2):

$$\Pi_{i} = M_{\Pi / \Pi B i} \cdot \mathcal{U}_{i} \cdot K_{u} \cdot K_{g} \cdot K_{e} \cdot K_{m} + (M_{\phi i} - M_{\Pi / \Pi B i}) \cdot 5 \mathcal{U}_{i} \cdot K_{u} \cdot K_{g} \cdot K_{e} \cdot K_{m}.$$
(1.2)

Если же фактические выбросы или сбросы превышают временно разрешённые значения лимитов ВСВ или ВСС, то за выбросы в атмосферу или сбросы со сточными водами в этом случае плату Π_i , руб./т, рассчитывают по формуле:

$$\Pi_{i} = M_{\Pi \Pi B i} \cdot \mathcal{U}_{i} \cdot K_{u} \cdot K_{s} \cdot K_{s} \cdot K_{m} + \left(M_{BCBi} - M_{\Pi \Pi B i} \atop (BCCi)} - M_{\Pi \Pi B i}\right) \cdot 5\mathcal{U}_{i} \cdot K_{u} \cdot K_{s} \cdot K_{s} \cdot K_{m} + \left(M_{\phi i} - M_{BCBi} \atop (BCCi)}\right) \cdot 25\mathcal{U}_{i} \cdot K_{u} \cdot K_{s} \cdot K_{s} \cdot K_{m},$$
(1.3)

где M_{BCBi} — соответственно лимитированные значения выбросов и сбросов загрязняющего вещества, т/год.

В данном случае плата за выбросы нормативно допустимые и временно разрешённые (лимиты) осуществляется за счёт себестоимости выпускаемой продукции. Плата же за сверхлимитированные значения выбросов или сбросов производится за счёт прибыли предприятия. Суммарная плата Π_{Σ} , руб./год,

определяется как сумма платежей за каждый вид загрязнения и за каждое загрязняющее вещество:

$$\Pi_{\Sigma} = \Sigma \ \Pi_{i}. \tag{1.4}$$

Если же предприятие загрязняет окружающую среду, не имея на то разрешения, то при оплате за все выбросы или сбросы вводится 25-кратный штрафной коэффициент:

$$\Pi_{i} = 25 M_{\phi i} \cdot \coprod_{i} K_{\mu} \cdot K_{\vartheta}. \tag{1.5}$$

Таблица 1 - Нормативы платы за выбросы в атмосферный воздух загрязняющих веществ стационарными источниками (с изменениями согласно постановлению Правительства от 01.07.2005 № 410)

Наименование загрязняющего вещества	Нормативы платы за выброс 1 тонны	
	загрязняющего вещества (рублей)	
	в пределах	в пределах
	установленных	установленных
	допустимых	лимитов выбросов
	нормативов	
	выбросов	
1	2	3
1. Азота диоксид	52	260
2. Азота оксид	35	175
3. Акролеин	68	340
4. Акрилонитрил	68	340
5. Альдегид пропионовый	205	1025
6. Альдегид масляный	137	685
7. Алюминия окись	205	1025
8. Аммиак	52	260
9. Амины алифатические	683	3415
10. Аммиачная селитра	7,5	37,5
11. Ангидрид малеиновый (пары, аэрозоль)	40	200
12. Ангидрид серный (серы триоксид), кислота	21	105
серная		
13. Ангидрид сернистый (серы диоксид)	21	105
14. Ангидрид уксусный	68	340
15. Ангидрид фталевый (пары, аэрозоль)	21	105
16. Ангидрид фосфорный	41	205
17. Анилин	68	340
18. Ацетон	6,2	31
19. Ацетальдегид (уксусный альдегид)	205	1025
20. Ацетофенон (метилфенилкетон)	683	3415
21. Барий и его соли (в пересчёте на барий)	513	2565
22. Белок пыли белково-витаминного	2049	10245
концентрата (БВК)		
23. Бенз(а)пирен (3,4-бензпирен)	2049801	10249005
24. Бензин (нефтяной, малосернистый в	1,2	6
пересчёте на углерод)		

25. Бензин сланцевый (в пересчёте на углерод)	41	205
26. Бензол	21	105
27. 1,3-Бутадиен	2,5	12,5
28. Бутилацетат	21	105
29. Бутил хлористый	30	150
30. Бор аморфный	205	1025
31. Бром	52	260
32. Бензил хлористый (бензилхлорид)	41	205
33. Ванадия пятиоксид	1025	5125
34. Взвешенные твёрдые вещества	13,7	68,5
(нетоксичные соединения, не содержащие	13,7	00,5
полициклических ароматических		
углеводородов, металлов и их солей, диоксида		
кремния)		
35. Винилацетат	13,7	68,5
36. Винил хлористый	410	2050
37. Водород бромистый	21	105
38. Водород мышьяковистый (арсин)	1025	5125
39. Водород фосфористый (фосфорин)	2050	10250
40. Водород хлористый (соляная кислота)	11,2	56
41. Водород цианистый (водорода цианид,	205	1025
синильная кислота)	203	1023
42. Вольфрам, вольфрама карбид, силицид	21	105
43. Гексаметилендиамин	2050	10250
44. Гексан	0,05	0,25
45. Гексахлорциклогексан (гексахлоран)	68	340
46. Диоксан (диокись этилена)	30	150
47. Дифенилметандиизоцианат	2050	10250
	410	2050
48. Диметиламин	513	2565
49. 4,4-Диметилдиоксан-1,3	257	1285
50. О,О-Диметил-О-(4-нитрофенил) тиофосфат	103	515
51. О,О-Диметил-)-(1-окси-2,2,2-трихлорэтил) фосфонат (хлорофос)	103	313
52. Диметилсульфид	26	130
	68	340
53. Диметилформамид 54. Динил (смесь 25 % дифенила и 75 %	205	1025
дифенилоксида)	203	1023
1	2	3
55. Дихлорфторметан (фреон-12)	10	50
	21	105
56. Дибутилфталат 57. Дивинилбензол	513	2565
58. Диоктилфталат	103	515
1 1	22	110
59. Дихлорпропан		
60. Диэтиламин	41	205 25
61. Дихлорэтан	21	
62. Диэтилбензол		105
63. Диэтиловый эфир	7,4	37
64. Диэтилртуть (в пересчёте на ртуть)	6833	34165
65. Железа диоксид (в пересчёте на железо)	52	260
66. Железа трихлорид (в пересчёте на железо)	513	2565
67. Железа сульфат (в пересчёте на железо)	293	1465

68. Золы углей: печерского, кузнецкого,	7	35
подмоскового, экибастузского, марки Б1	1	33
бабаевского и тюльганского месторождений		
69. Золы прочих углей	103	515
70. Зола сланцевая	21	105
71. Изопропиламин	205	1025
72. Изопрен	52	260
73. Изобутилен (2-метилпропен)	21	105
74. Изопропилбензол (кумол)	147	735
75. Кадмий оксид, кадмий сульфат (в	6833	34165
пересчёте на кадмий)	0033	34103
76. Кальция оксид	7.5	37,5
77. Канифоль (флюс канифольный	7,5 5	25
активированный)	3	23
78. Калий гидросульфат, калий хлорид	21	105
79. Капролактам	35	175
80. Керосин	2,5	12,5
81. Кислота азотная	13,7	68,5
	52	260
82. Кислота акриловая		1025
83. Кислота валериановая	205 410	2050
84. Кислота капроновая 85. Кислота масляная		
	205	1025
86. Кислота борная	103	515
87. Кислота ортофосфорная	103	515
88. Кислота пропионовая	137	685
89. Кислота себациновая	26	130
90. Кислота терефталевая	2050	10250
91. Кислота уксусная	35	175
92. м-Крезол	103	515
93. Кремния диоксид	21	105
94. Кобальт металлический	2050	10250
95. Кобальта оксид	2050	10250
96. Ксилол (смесь изомеров о-,м-,п-)	11,2	56
97. Ксилидины (диметиламинобензолы) (мета-,	171	855
орто- и пара-изомеров)		105
98. Магний оксид	21	105
99. Марганец и его неорганические соединения	2050	10250
(в пересчёте на диоксид марганца)	2070	10050
100. Меди сульфат, хлорид (в пересчёте на	2050	10250
медь)	1005	7.10.7
101. Медь, оксид меди (в пересчёте на медь)	1025	5125
102. Мышьяк и его неорганические соединения	683	3415
103. Мезидин	683	3415
104. Метил хлористый (метила хлорид)	35	175
105. Метан, в том числе в составе нефтяного	50	250
газа, сжигаемого факельными установками		-0.7
106. Метилаль	13,7	68,5
107. Метилен хлористый (метилена хлорид)	1	5
108. Метилмеркаптан	20498	102490
109. альфа-Метилстирол	52	260
110. Метилэтилкетон	21	105

111. Метиловый эфир метакриловой кислоты	205	1025
(метил-метакрилат)	205	1025
112. Натр едкий (гидрат оксида натрия, гидроокиси натрия)	203	1023
113. Натрия оксид	205	1025
114. Натрия карбонат (сода кальцинированная)	52	260
1 1 7		
115. Нафталин	683	3415
116. бета-Нафтол	342	1710
117. альфа-Нафтахинон	410	2050
118. Никель металлический	2050	10250
119. Никеля оксид (в пересчёте на никель)	2050	10250
120. Никель, растворимые соли	10249	51245
121. Нитробензол	257	1285
122. Озон	68,3	341,5
123. Олова хлорид (в пересчёте на олово)	41	205
124. Пентан	0,08	0,4
125. Перхлорбензол	683	3415
126. Пропилен	0,6	3
127. Пропилена окись	26	130
128. Пропиленхлоргидрин	205	1025
129. Пиридин	26	130
130. Пыль древесная	13,7	68,5
131. Пыль извести и гипса	13,7	68,5
132. Пыль каменноугольная	13,7	68,5
133. Пыль коксовая и агломерационная	41	205
134. Пыль лубяная, хлопчатобумажная,	41	205
хлопковая, льняная		
135. Пыль шерстяная, пуховая, меховая	68	340
136. Пыль неорганическая, содержащая		
диоксид кремния в процентах:		
выше 70 % (динас и др.)	41	205
70–20 % (цемент, оливин, апатит, глина,	21	105
шамот каолиновый)		
ниже 20 % (доломит, слюда, тальк и др.)	13,7	68,5
137. Пыль стекловолокна	35	175
138. Пыль стеклопластика	35	175
139. Пыль пресс-порошков	21	105
140. Пыль цементных производств	103	515
141. Пыль катализатора	41	205
142. Соединения ртути (в пересчёте на ртуть)	6833	34165
143. Ртуть металлическая	6833	34165
144. Растворитель древесноспиртовый марки А	17,4	87,0
145. Сажа	80	400
146. Свинец сернистый (в пересчёте на свинец)	1206	6030
1 commed comments (a nopec lete in comment)	1200	0030
147. Свинец и его соединения, кроме	6833	34165
тетраэтилсвинца (в пересчёте на свинец)		
148. Сероводород	257	1285
149. Сероуглерод	410	2050
150. Синтетические моющие средства	205	1025
151. Скипидар	2,5	12,5
	·	·

152. Спирт амиловый	205	1025
153. Спирт бутиловый (бутанол)	21	105
154. Спирт диацетоновый	7,5	37,5
155. Спирт изобутиловый	21	105
156. Спирт изооктиловый	13,7	68,5
157. Спирт изопропиловый (пропанол-2)	3,7	18,5
158. Спирт метиловый (метанол)	5	25
159. Спирт этиловый (этанол)	0,4	2
160. Стирол	1025	5125
161. Теллура диоксид	4100	20500
162. Тетраэтилсвинец	51245	256225
163. 0-Толуидин	82	410
164. Тетрагидрофуран	11,2	56
165. Тетрахлорэтилен (перхлорэтилен)	35	175
166. Титана диоксид	5	25
167. Толуилендиизоцианат	103	515
168. Толуол	3,7	18,5
169. Трихлорметан (хлороформ)	68	340
170. 1,1,1-Трихлорэтан (метилхлороформ)	11,2	56
171. Трихлорэтилен	5	25
172. Триметиламин	13,7	68,5
173. Трихлорбензол	257	1285
174. Трихлороснаол	52	260
174. Триэтаноламин 175. Триэтиламин	15	75
176. Уайт-спирит		12,5
170. Уаит-спирит 177. Летучие низкомолекулярные	2,5	25
углеводороды (пары жидких топлив) по	3	23
углеводороды (пары жидких топлив) по углероду		
178. Углерода окись (углерода оксид)	0,6	3
179. Углерод четырёххлористый	3,7	18,5
180. Фенол	683	3415
181. Формальгликоль (диоксолан-1,3)	0,4	2
182. Фтор трихлорметан (фреон-11)	0,2	1
183. Формальдегид	683	3415
184. Фтора газообразные соединения	410	2050
185. Фтористые соединения, хорошо	205	1025
растворимые (гексафторид натрия, фторид	203	1023
натрия)		
186. Фтористые соединения, плохо	68	340
растворимые (гексафторалюминат натрия,	00	340
кальция фторид и алюминия фторид)		
187. Фосген	683	3415
188. Фурфурол	41	205
189. Хлор	68	340
190. м-Хлоранилин	205	1025
191. Хлорбензол	203	1023
192. Хлороензол	1025	5125
192. Хлоропрен 193. Хром (Cr ⁶⁺)	1366	6830
193. Аром (СГ) 194. п-Хлорфенол	205	1025
		6
195. Циклогексан	1,2 35	
196. Циклогексанол	33	175

1		T
197. Циклопентан	21	105
198. 2,5-Циклогександиен-1,4-диондиоксим	21	105
199. Цинка оксид (цинка окись)	41	205
200. Хлорэтил (этил хлористый)	11,2	56
201. Циклогексанон	52	260
202. Эпихлоргидрин	11,2	56
203. Этиленамин	0,7	3,5
204. Этилацетат	21	105
205. Этилбензол	103	515
206. Этиленамин	0,7	3,5
207. Этилена окись	68	340
208. Этиленгликоль	2,5	12,5
209. Этиленхлоргидрин	205	1025
210. Вулканизационные газы пенного	1025	5125
производства		
211. Диметилфталат	293	1465
212. Диэтилфталат	205	1025
213. Изобутилбензоат	137	685
214. Калий нитрат	68	340
215. Кальций гидроскид, кальций нитрат	68	340
216. Кобальт (соли кобальта в пересчёте на	2050	10250
кобальт)		
217. Мазутная зола теплоэлектрстанций (в	1025	5125
пересчёте на ванадий)		
218. Метилакрелат	205	1025
219. Метиламин (монометиламин)	2050	10250
220. Полиизоцианат	205	1025
221. Пыль аминопластов	41	205
222. Пыль выбросов табачных фабрик (в	5125	25625
пересчёте на никотин)		
223. Пыль синтетической кожи	205	1025
224. Фенилизоцианат	4100	20500
	· · · · · · · · · · · · · · · · · · ·	

Таблица 2 - Нормативы платы за сбросы загрязняющих веществ в поверхностные и подземные водные объектов

Наименование загрязняющих веществ	Нормативы платы за сброс 1 тонны загрязняющих веществ (рублей)	
	в пределах	в пределах
	установленных	установленных
	допустимых	лимитов сбросов
	нормативов сбросов	
1	2	3
1. Аммоний-ион (NH ⁺)	551	2755
2. Алкилсульфонаты натрия (на основе	552	2760
керосина)		
3.Алкилсульфонат натрия (в техническом	552	2760
препарате)		
4.Алюминий (Al ³⁺)	6887	34435
5. Аммиак (по азоту)	5510	27550
6. Анилин (аминобензол)	2754809	13774045

7. Ацетон	5510	27550
8. Бензол	552	2760
9. Бор (по В ³⁺)	16205	81025
10. Бор (по В ³⁺ , для морских водоёмов)	27	135
11. Висмут	2755	13775
12. Ванадий	275481	1377405
13. Взвешенные вещества	366*	1830
14. Вольфрам (W ⁶⁺)	344352	1721750
15. Гидразингидрат	918330	4591650
16. Глицерин	276	1380
17. Декстрин (смесь полисахаридов)	276	1380
18. 1,2-Дихлорэтан	2755	13755
19. Диссолван 4411 (полиоксиалкиленгликоль)	307	15755
20. Железо (Fe) (все растворимые формы)	2755	13775
21. Изопрен (2-метилбута-1,3-диен)	27548	137740
22. Кадмий	55096	275480
22. Кадмии 23. Калий (K ⁺)	6,2	31
23. Калии (К*) 24. Кальций (Са ²⁺)	1,2	6
24. Кальции (Са) 25. Капролактам	27548	137740
1	6887	34435
26. Краситель прямой бирюзовый светопрочный К	0007	34433
27. Краситель хромовый чёрный О	9183	45915
	5510	27550
28. Краситель кислотный чёрный С		
29. Краситель прямой чёрный 3	1378	6890
30. Ксантогенат бутиловый натриевый	9183	45915
31. Ксилол (смесь изомеров)	5510	27550
32. Кобальт (Co ²⁺)	27548	137740
33. Латекс БС-85М	552	2760
34. Латекс СКН-40ИХМ	2755	13775
35. Латекс сополимера винилиден-хлорида,	27548	137740
винилхлорида, бутил-акрилата и итаконовой		
кислоты ВД ВХ БАИк 63Е-ПАЛ	27.6	1200
36. Лимонная кислота	276	1380
37. Магний (Mg ²⁺) (все растворимые в воде	6,9	34,5
формы)	27540	127740
38. Марганец (Mn ²⁺)	27548	137740
39. Масло соляровое (TX 01.05.100.70)	27548	137740
40. Масло легкое талловое (ТУ-81-05-100-70)	2755	13775
41. Медь (Cu ²⁺)	275481	1377405
42. Метанол	2755	13775
43. Моноэтаноламин	27548	137740
44. Молибден (Мо ⁶⁺)	229568	1147840
45. Мочевина	3,7	18,5
46. Мышьяк	5510	27550
47. Натрий (Na ⁺)	2,5	12,5
48. Нефть и нефтепродукты	5510	27550
49. Нефтяной сульфанат натрия	2755	13775
1	2	3
50. Никель (Ni ²⁺)	27548	137740
51. Нитрат-анион	6,9	34?5

52. Нитрит-анион	3444	17220
53. Олово и его соли (по Sn)	2460	12300
54. ОЖК-оксилированные жирные кислоты	71	355
55. ОП-7, полиэтиленгликолевые эфиры моно-	918	4590
и диалкилфенолов)	710	.690
56. ОП-10, СПАВ, смесь моно- и	552	2760
диалкилфеноловых эфиров и		_, , ,
полиэтиленгликоля)		
57. Пигмент железоокисный жёлтый	2755	13775
58. Пигмент железоокисный красный (марка	552	2760
КБ)		
59. Пиридин	27548	137740
60. Роданиды (по CNS ⁻)	2755	13775
61. Ртуть (Hg ²⁺)	27548091	137740455
62. Рубидий (Rb ⁺)	2755	13775
63. Свинец (Pb) (все растворимые в воде	45913	229565
формы)		
64. Селен (Se) (все растворимые в воде формы)	137740	688700
65. Скипидар	1378	6890
66. Стирол	2755	13775
67. Сероуглерод	276	1380
68. Сульфат-анион (сульфаты)	2,8	14
69. Сульфид-анион (сульфиды)	55096	275480
70. Сульфит-анион (сульфиты)	145	725
71. Сурьма	5510	27550
72. Танниды	27,5	137,5
73. Тетраэтилсвинец	27548091	137740455
74. Тиомочевина	276	1380
75. Толуол	552	2760
76. Трилон-Б	552	2760
77. Фенол	275481	1377405
78. Флотореагент талловый	5510	27550
79. Фосфаты (по Р)	1378	6890
80. Формальдегид	2755	13775
81. Фосфор трёххлористый	2755	13775
82. Фосфор пятихлористый	2755	13775
83. Фтор (F ⁻)	368	1840
84. Фурфурол	27548	137740
85. Хлор свободный (хлор активный) (Cl)	27548091	137740455
86. Хлориды (Cl ⁻)	0,9	4,5
87. Хром (Cr ³⁺)	3935	19675
88. Хром (Cr ⁶⁺)	13774	68870
89. Цинк (Zn ²⁺)	27548	137740
90. Цезий (Cz ⁺)	276	1380
91. Цианиды	5510	27550
92. Этиленгликоль	1102	5510
Пестициды (по действующим веществам):		
93. Атразин	55096	275480
94. Бентазон	196	980
95. Глифосфат	275481	1377405

96. Десметрин	550962	2754810
97. Дельта-Метрин	1377404560	6887022800
98. Диазинон	27548091	137740455
99. Дикват	688700	3443500
100. Дифлубензурон	688702	3443510
101. Дихлорпрол	445	2225
102. ДДТ	27548091	137740455
103. Каптан	459133	2295665
104. Квартазин	275481	1377405
105. Краснодар 1	27548	137740
106. Ленацил	688702	3443510
107. Лямбдацигалотрин	13774045600	68870228000
108.Малатион	27548091	137740455
109. Металаксил	27548	137740
110. Метолор	459133	2295665
111. Метрибузин	275480912	1377404560
112. Мивал	276	1380
113. Молинат	393545	1967725
114. Нитрафен	3061	15305
115. Перметрин	16204759	81023795
116. Пиримикарб	393545	1967725
117. Пиримифосметил	27548091	137740455
118. Прометрин	5510	27550
119. Пропаргит	68871	344355
120. Пропиконазол	4591348	22956740
121. Тиабендазол	550962	2754810
122. Тиобенкарб	1377405	6887025
123. Тирам	2754809	13774045
124. Токсафен	27548091	137740455
125. Триадименол	2755	13775
126. Триадимефон	196772	983860
127. Триаллат	787088	3935440
128. Трихлорацетат натрия	7871	39355
129. Трифлиралин	918270	4591350
130. Фенфалерат	2295674267	11478371335
131. Фенилтротион	2754809120	13774045600
132. Фенмедифан	4591348	22956740
133. Фентион	27548091	137740455
134. Флуазифоп-П-бутил	275481	1377405
135. Фозалон	9182698	45913490
136. Хлоридазон	27548	137740
137. Хлорпирифос	27548091	137740455
138. Циклоат	2754809	13774045
139. Циперметрин	2754809120	13774045600
140. Эндосульфан	11977431	59887155
141. ЭПТЦ	3443511	17217555
142. Стронций (Sr) (все растворимые в воде	689	3445
формы)		
/	•	•

Примечание: * — норматив платы за сбросы взвешенных веществ применяется с использованием коэффициента $K_{ei} = \frac{C_p}{C_v + C_p}$,

где С_р – фоновая концентрация взвешенных веществ в водоёме, мг/л;

 C_y — допустимое увеличение содержания взвешенных веществ при сбросе сточных вод в водоём, мг/л.

При оценке загрязняющих веществ в поверхностные и подземные водные объекты по биохимической потребности в кислороде (БПК $_{\text{полн}}$) и сухому остатку нормативы платы в пределах установленных допустимых нормативов сбросов и в пределах установленных лимитов сбросов применяются соответственно в следующих размерах (рублей за тонну): по БПК $_{\text{полн}}$ - 91 и 455, по сухому остатку – 0,2 и 1.

Норматив платы за сбросы взвешенных веществ применяется с использованием коэффициента, определяемого как величина, обратная сумме допустимого увеличения содержания взвешенных веществ при сбросе сточных вод к фону водоёма и фоновой концентрации взвешенных веществ в воде водного объекта, принятой при установлении нормативов предельно допустимых сбросов загрязняющих веществ.

Таблица 5 - Коэффициенты, учитывающие экологические факторы (состояние атмосферного воздуха и почвы), по территориям экономических районов Российской Федерации

Экономические районы РФ	Значение коэффициента Кэ	
•	для атмосферного воздуха*	для почвы**
Северный	1,4	1,4
Северо-Западный	1,5	1,3
Центральный	1,9	1,6
Волго-Вятский	1,1	1,5
Центрально-Чернозёмный	1,5	2
Поволжский	1,9	1,9
Северо-Кавказский	1,6	1,9
Уральский	2	1,7
Западно-Сибирский	1,2	1,2
Восточно-Сибирский	1.4	1,1
Дальневосточный	1	1,1
Калининградская область	1,5	1,3

Примечание: * — применяется с дополнительным коэффициентом 1,2 при выбросе загрязняющих веществ в атмосферный воздух городов;

^{**} — применяется при определении платы за размещение отходов производства и потребления.

Таблица 6 - Коэффициенты, учитывающие экологические факторы (состояние водных объектов), по бассейнам морей и рек

Бассейны морей и рек	Значение коэффициента К _э
1	2
Бассейн Балтийского моря, б	
Республика Карелия	1,13
Ленинградская область	1,51
Новгородская область	1,14
Псковская область	1,12
Тверская область	1,08
Город Санкт-Петербург	1,51
Прочие реки бассейна Балтийского моря	1,04
Бассейн Каспийского моря, б	•
Республика Башкортостан	1,12
Республика Калмыкия	1,3
Республика Марий Эл	1,11
Республика Мордовия	1,11
Республика Татарстан	1,35
Удмуртская Республика	1,1
Чувашская Республика	1,11
Астраханская область	1,31
Владимирская область	1,17
Волгоградская область	1,32
Вологодская область	1,14
Ивановская область	1,17
Калужская область	1,17
Кировская область	1,11
Костромская область	1,17
Московская область	1,2
Нижегородская область	1,14
Новгородская область	1,06
Оренбургская область	1,09
Орловская область	1,17
Пензенская область	1,31
Пермская область	1,13
Рязанская область	1,17
Самарская область	1,36
Саратовская область	1,32
Свердловская область	1,1
Смоленская область	1,16
Тамбовская область	1,09
Тверская область	1,17
Тульская область	1,19

Ульяновская область	1,31
Челябинская область	1,1
Ярославская область	1,19
Город Москва	1,41
Коми-Пермяцкий автономный округ	1,06
Бассейн р. Терек	
Республика Дагестан	1,11
Республика Ингушетия	1,48
Кабардино-Балкарская Республика	1,11
Республика Калмыкия	1,11
Республика Северная Осетия – Алания	1,12
Чеченская Республика	1,48
Бассейн р. Урал	
Республика Башкортостан	1,14
Оренбургская область	1,45
Челябинская область	1,2
Прочие реки бассейна Каспийского моря	1,06
Бассейн Азовского моря, бассейн	
Ставропольский край	1,26
Белгородская область	1,15
Волгоградская область	1,07
Воронежская область	1,15
Курская область	1,11
Липецкая область	1,2
Орловская область	1,11
Пензенская область	1,07
Ростовская область	1,56
Саратовская область	1,07
Тамбовская область	1,12
Тульская область	1,14
Бассейн р. Кубани	
Республика Адыгея	2
Карачаево-Черкесская Республика	1,53
Краснодарский край	2,2
Ставропольский край	1,53
Прочие реки бассейна Азовского моря	1,15
Бассейн Чёрного моря, бассейн р	
Белгородская область	1,05
Брянская область	1,3
Калужская область	1,12
Курская область	1,14
Смоленская область	1,33
Прочие реки бассейна Черного моря	1,2
Бассейны морей Северного Ледовитого и Тихого он	сеанов, бассейн р. Печоры

Республика Коми	1,17
Архангельская область	1,34
Ненецкий автономный округ	1,1
Бассейн р. Северной Двин	•
Республика Коми	1,1
Архангельская область	1,36
Вологодская область	1,14
Кировская область	1,02
Бассейн р. Оби	
Республика Алтай	1,04
Республика Хакасия	1,03
Алтайский край	1,04
Красноярский край	1,03
Кемеровская область	1,16
Курганская область	1,05
Новосибирская область	1.08
Омская область	1,1 1,18
Свердловская область Томская область	1,18
Тюменская область	
Челябинская область	1,04
	1,13
Ханты-Мансийский автономный округ	1,04
Ямало-Ненецкий автономный округ	1,03
Бассейн р. Енисей	
Республика Бурятия	1,36
Республика Тыва	1,02
Красноярский край	1,17
Иркутская область	1,36
Агинский Бурятский автономный округ	1,1
Таймырский (Долгано-Ненецкий) автономный округ	1,17
Усть-Ордынский Бурятский автономный округ	1,1
Эвенкийский автономный округ	1,02
Бассейн р. Лены	1,02
Республика Бурятия	1,24
Республика Саха (Якутия)	1,22
Хабаровский край	1,02
1	
Амурская область	1,01
Иркутская область	1,14
Бассейн р. Амур	1 04
Приморский край	1,04
Хабаровский край	1,27
Амурская область	1,05
Читинская область	1,05
Еврейская автономная область	1,05
Прочие реки бассейнов морей Северного Ледовитого и Тихого океанов	1

2. ПЛАТА ЗА ВЫБРОСЫ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ СТАЦИОНАРНЫМИ ИСТОЧНИКАМИ

К стационарным источникам выбросов загрязняющих веществ относятся горячие источники (дымовые трубы котельных, печей, кузниц и др.) и холодные источники (системы вентиляции, кондиционирования и т. п.).

2.1 Плата за выбросы загрязняющих веществ из горячих источников

При сжигании различных видов топлива в окружающую среду поступают горячие газы через специальные дымовые трубы. В состав уходящих газов (кроме CO_2 и H_2O) входят загрязняющие атмосферу вещества: окислы серы SO_2 , азота NO_x , включающие NO и NO_2 , углерода CO, бенз(а)пирена, а также частицы золы и сажи. При сжигании котельного высокосернистого топлива иногда в уходящих газах содержатся и окислы ванадия V_2O_5 .

Для снижения содержания вышеуказанных веществ в уходящих газах используются либо специальные технологические приёмы (рециркуляция газов и ступенчатый подвод воздуха к топке — для уменьшения окислов азота NO_x, ввод присадок — для уменьшения окислов серы, дожигание или каталитическое доокисление — для уменьшения окислов углерода), либо устройства (золоуловители, электрофильтры и т. п. — для уменьшения выбросов золы).

Вышеуказанные загрязняющие вещества через дымовую трубу выбрасываются и рассеиваются в окружающей среде. Чем больше высота дымовой трубы Н, тем на большей территории рассеиваются выбросы соответственно при меньшей их концентрации в приземном слое атмосферы.

На характер рассеивания оказывают влияние ряд факторов, включающих состояние атмосферы в данном регионе, где расположен источник выброса, а также скорость оседания вредных веществ в атмосфере в зависимости от размера и фазового состояния вещества и рельефа местности. Исходя из этих соображений определяют значения предельно допустимых выбросов загрязняющих веществ.

Предельно допустимыми называются такие выбросы загрязняющих веществ, при которых в приземном слое атмосферы на определённом

расстоянии от источника устанавливаются концентрации веществ, равные предельно допустимым значениям (ПДК).

Предельно допустимые выбросы $M_{\Pi Д B}$, г/с, из горячих источников с круглым устьем рассчитываются по формуле:

$$M_{\Pi J B} = \frac{(\Pi J K_{M.p.} - C_{\phi}) H^2 \sqrt[3]{V_{\partial.z.} \cdot \Delta T}}{A \cdot F \cdot m \cdot n \cdot z}, \qquad (2.1)$$

где $\Pi \not \coprod K_{\text{м.р.}}$ — максимальная разовая предельно допустимая концентрация вредного вещества в приземном слое атмосферы; определяется по табл. 7;

 C_{φ} — фоновая концентрация данного загрязняющего вещества в рассматриваемом регионе или городе, зависящая от уровня загрязнения атмосферного воздуха другими предприятиями и средствами транспорта. При отсутствии данных в учебных расчётах можно принять $C_{\varphi} = (0,1...0,2)$ ПДК_{м.р.}, если другие величины не заданы преподавателем;

Н – высота дымовой трубы, м;

 $V_{\text{д.г.}}$ – объёмный расход дымовых газов, м³/с;

 ΔT — разность температур уходящих газов T_{Γ} и окружающего атмосферного воздуха T_{B} в самый жаркий день ($\Delta T = T_{\Gamma} - T_{B}$);

A — коэффициент температурной стратификации атмосферы, определяющий условия горизонтального и вертикального рассеивания атмосферных примесей (определяется по табл. 8), $c^{2/3} \cdot \text{мг/K}^{1/3}$;

F — безразмерный коэффициент (число Фруда), учитывающий скорость оседания вредных веществ в атмосфере в зависимости от размера и фазового состояния веществ, равный единице для жидких и газообразных веществ, для твёрдых веществ при коэффициенте $\eta = 90$ % F = 2; при $\eta = 75...90$ % F = 2,5; без очистки F = 3;

m и n- коэффициенты, учитывающие условия выхода газовоздушной смеси из устья; для приближённых расчётов можно принять $m\cdot n=1;$

z — коэффициент рельефа местности, учитывающий влияние рельефа на рассеивание примесей, равен единице для равнинной местности; для пересечённой местности z=2.

 Φ актические выбросы загрязняющих веществ в атмосферу M_{Φ} определяются на основе технологических расчётов либо задаются и выражаются в долях от предельно допустимых выбросов.

Зная вышеуказанные значения $M_{\phi i}$ и $M_{\Pi Д B i}$, определяют плату за загрязнение окружающей среды в зависимости от наличия разрешения соответствующих экологических органов на выброс — по формулам (1.1)—(1.4) или его отсутствия — по формуле (1.5).

Таблица 7 -Предельно допустимые концентрации вредных веществ (ПДК)

в приземном слое атмосферы, $M\Gamma/M^3$

Вещество	ПДК _{м.р.}	ПДКсс	Класс
			опаснос
			ТИ
1	2	3	4
Азота диоксид	0,085	0,04	3
Азота оксид	0,6	0,06	3
Аммиак	0,2	0,04	4
Асбест природный и искусственный	-	0,15	2
Ацетон	0,35	0,35	4
Бенз(а)пирен	-	10-6	1
Бензин (нефтяной, малосернистый, в пересчёте на углерод)	5,0	1,5	4
Бензин сланцевый (в пересчёте на углерод)	0,05	0,05	4
Бром	-	0,04	2
Бутан	200	-	4
Ванадия оксид	-	0,002	1
Взвешенные вещества (пыль населённых мест,			
нетоксичная)	0,5	0,15	3
Дифторхлорметан (фреон 22)	100	10	4
Дихлордифторметан (фреон 12)	100	10	4
Дихлорэтан	3	1	2
Кадмия оксид (в пересчёте на кадмий)	-	0,001	1
Кислота серная по молекуле H ₂ SO ₄	0,3	0,1	2
Кислота азотная НОО3	0,4	0,4	2
Кислота масляная	0,015	0,01	3
Кислота соляная (хлористый водород)	0,05	0,015	2
Кислота плавиковая (фтористый водород)	0,02	0,005	2
Ксилол	0,2	0,2	3
Кобальт металлический	-	0,001	2
Капролактам (пары, аэрозоль)	0,06	0,06	3
Летучие низкомолекулярные углеводороды (в пересчёте на			
углерод)	-	1,5	4
Метилмеркаптан	9.10-6	-	2
Медь сернокислая	0,003	0,001	2
Меди окись	-	0,002	2
Марганец и его соединения (в пересчёте на MnO ₂)	0,01	0,001	2
Мышьяк (кроме H ₃ As)	-	0,003	2

Никель и его оксиды	0,001	0,001	1
Неорганические соединения ртути (в пересчёте на ртуть)	1	0,0003	1
Озон	0,16	0,03	1
Пыль неорганическая, содержащая диоксид кремния, %:			
свыше 70 (динас и др.);	0,15	0,05	3
70-20 (шамот, цемент и др.);	0,3	0,1	3
ниже 20 (доломит и др.)	0,5	0,15	3
Пыль хлопковая	0,5	0,05	3
Ртуть металлическая	1	0,0003	2
Сажа	0,15	0,05	3
Свинец и его соединения (кроме тетраэтилсвинца, в			
пересчёте на свинец)	-	0,0003	1
Сероводород	0,008	0,008	2
Серы диоксид	0,5	0,05	3
Углерода оксид	5	3	4
Углерод четырёххлористый	4,0	2,0	4
Фенол	0,01	0,003	1
Фосфорный ангидрид	0,15	0,05	2
Формальдегид	0,035	0,003	1
Фосфора оксид	0,15	0,05	1
Фтористый аммоний	0,02	0,005	1
Фтористый бром	0,02	0,005	1
Фтор и его соединения органические, хорошо растворимые	0,02	0,005	2
Фториды неорганические хорошо растворимые	0,03	0,01	2
Плохо растворимые соединения фтора (фториды)	0,2	0,03	2
Хлор (молекулярный)	0,1	0,03	2
Хлороводород НС1	0,2	0,2	2
Хром шестивалентный (в пересчёте на оксид хрома)	0,0015	0,0015	1
Циановодород (синильная кислота)	-	0,01	
Цинка окись (в пересчёте на цинк)	-	0,05	2
Эпихлоргидрин	0,2	0,2	2
Этилен	3	3	4

Пример 2.1 При сжигании каменного угля в паровых котлах через дымовую трубу высотой $H=45\,\mathrm{M}$, расположенную в г. Ростове-на-Дону, выбрасываются дымовые газы расходом 5 M^3/c , содержащие сернистый ангидрид SO_2 в количестве 0,1 $\mathrm{M}_{\Pi \mathrm{JB}}$, диоксид азота $\mathrm{NO}_2-1,1$ $\mathrm{M}_{\Pi \mathrm{JB}}$, оксид азота $\mathrm{NO}-0,025$ $\mathrm{M}_{\Pi \mathrm{JB}}$, оксид углерода $\mathrm{CO}-0,03$ $\mathrm{M}_{\Pi \mathrm{JB}}$ и золу в количестве 30 $\mathrm{M}_{\Pi \mathrm{JB}}$. Рассчитать плату за разрешённые выбросы этих загрязняющих веществ в атмосферу в 2004 г.

Расчёт

1. Определяем предельно допустимые выбросы загрязняющих веществ через дымовую трубу по формуле (2.1):

$$M_{\Pi J J B} = \frac{(\Pi J J K_{_{M.p.}} - C_{_{\phi}}) H^2 \sqrt[3]{V_{_{\partial.e.}} \cdot \Delta T}}{A \cdot F \cdot m \cdot n \cdot z}, \, \Gamma/c:$$

- для сернистого ангидрида SO₂:

Известно, что ПДК $^{SO2}_{\text{м.р.}}$ = 0,5 мг/м 3 (по табл. 7), примем C_{φ} = 0,1 ПДК $_{\text{м.р.}}$, т.е. C^{SO2}_{φ} = 0,05 мг/м 3 ; высота трубы H = 45 м, объёмный расход уходящих газов $V_{\text{л.г.}}$ = 5 м 3 /с.

Примем разность температур уходящих газов и окружающего воздуха $\Delta T = 165~^{\circ}\mathrm{C}; \ m\cdot n = 1, \ z = 1 \ и \ по \ табл. 8 коэффициент, зависящий от температурной стратификации атмосферы, для г. Ростова-на-Дону <math>A = 200,$ тогда:

$$M_{\Pi JB^{SO2}} = \frac{(0.5 - 0.05) \ 45^2 \ \sqrt[3]{5 \cdot 165}}{200 \cdot 1 \cdot 1 \cdot 1} = 42.7 \ \Gamma/c;$$

- для диоксида азота NO₂:

по табл. 7 определяем ПДК $_{\text{м.р.}}$ $^{\text{NO2}}=0{,}085$ мг/м 3 ; примем С $_{\varphi}=0{,}2$ ПДК $_{\text{м.р.}}$, тогда С $_{\varphi}$ $^{\text{NO2}}=0{,}2\cdot0{,}085=0{,}017$ мг/м 3 ; F=1.

$$M_{\Pi \Pi B^{NO2}} = \frac{(0.085 - 0.017) \cdot 45^2 \sqrt[3]{5 \cdot 165}}{200 \cdot 1 \cdot 1 \cdot 1} = 6.46 \text{ r/c};$$

- для оксида азота NO:

по табл. 7 определяем ПДК $_{\text{м.р.}}^{\text{NO}}=0,6$ мг/м $^3;$ F=1; примем $C_{\varphi}=0,1$ ПДК $_{\text{м.р.}},$ тогда $C_{\varphi}^{\text{NO}}=0,1\cdot0,6=0,06$ мг/м $^3.$

$$M_{\Pi JB^{NO}} = \frac{(0.6 - 0.06) \cdot 45^2 \sqrt[3]{5 \cdot 165}}{200 \cdot 1 \cdot 1 \cdot 1} = 51.29 \ \Gamma/c;$$

Таблица 8- Величина А по странам и регионам

Регион, страна	A, $c^{2/3} \cdot M\Gamma/K^{1/2}$
Центральная часть европейской территории России	120
Прибалтика, Север и Северо-Запад России, Среднее	
Поволжье, Урал, Украина	160
Казахстан, Средняя Азия, Центральная Сибирь, Нижнее	
Поволжье, Северный Кавказ, Северная часть Сибири,	200
Северо-Восточная Сибирь	
Субтропическая часть Средней Азии	240

- для оксида углерода СО:

По табл. 7 определяем ПДК $_{\text{м.р.}}^{\text{CO}}=5$ мг/м $^3;$ F=1; примем $C_{\varphi}=0,1$ ПДК $_{\text{м.р.}},$ тогда $C_{\varphi}^{\text{CO}}=0,1\cdot 5=0,5$ мг/м $^3.$

$$M_{\Pi J B^{CO}} = \frac{(5-0.5) \cdot 45^2 \cdot \sqrt[3]{5 \cdot 165}}{200 \cdot 1 \cdot 1 \cdot 1} = 427.38 \, _{\Gamma/C};$$

- для золы:

По табл. 7 определяем ПДК $_{\text{м.р.}}$ 3 = 0,15 мг/м³; F = 3, т. к. золоочистка отсутствует; примем $C_{\Phi}=0,1$ ПДК $_{\text{м.р.}}$, тогда C_{Φ} 3 = 0,1 · 0,15 = 0,015 мг/м³.

$$M_{\Pi \mathcal{B}^3} = \frac{(0.15 - 0.015) \cdot 45^2 \cdot \sqrt[3]{5 \cdot 165}}{200 \cdot 3 \cdot 1 \cdot 1} = 4.27 \text{ r/c}.$$

2. Рассчитаем фактические выбросы:

- для сернистого ангидрида SO₂:

по условию ${\rm M_{\phi}^{SO2}}=0.1~{\rm M_{\Pi JB}^{SO2}};$ тогда ${\rm M_{\phi}^{SO2}}=0.1~42.7=4.27$ г/с;

- для диоксида азота NO₂:

по условию ${\rm M_{\phi}}^{\rm NO2}=1$,1 ${\rm M_{\Pi JB}}^{\rm TO2}$; тогда ${\rm M_{\phi}}^{\rm NO2}=1$,1 \cdot 6,46 = 7,11 г/с;

- для оксида азота NO:

по условию ${\rm M_{\phi}^{NO}}=0.025~{\rm M_{\Pi JB}^{NO}};$ тогда ${\rm M_{\phi}^{NO}}=0.025~{}^{\circ}~51,29=1,28~{\rm r/c};$

- для оксида углерода СО:

по условию ${\rm M_{\phi}^{CO}}=0.03~{\rm M_{\Pi JB}^{CO}};$ тогда ${\rm M_{\phi}^{CO}}=0.03~427.38=12.82~{\rm r/c};$

- для золы:

по условию $M_{\varphi^3}=30~M_{\Pi Д B}{}^{_3};$ тогда $M_{\varphi^3}=30 \cdot 4{,}27=128{,}1~{\mbox{г/c}}.$

3. Рассчитаем годовые фактические и предельно допустимые выбросы, принимая, что котлы работают в течение 10 месяцев в году, т. е. время работы составляет $10 \cdot 30 \cdot 24 \cdot 3600 = 25,92 \cdot 10^6$ с/год. Тогда фактические годовые выбросы сернистого ангидрида составят:

$$\frac{4,27 \cdot 25,92 \cdot 10^6}{1000 \cdot 1000} = 110,68$$
 т/год.

Аналогичным образом определяем фактические и предельно допустимые выбросы всех остальных загрязняющих веществ и данные сводим в табл. 9.

Таблица 9 - Фактические и предельно допустимые выбросы всех загрязняющих веществ

Загрязняющее вещество	Фактические выбросы, $M_{\phi i}$		Предельно допустимые выбросы, М _{ПДВі}	
	г/с	т/год	г/с	т/год
Сернистый ангидрид SO ₂	4,27	110,68	42,7	1106,78
Диоксид азота NO ₂	7,11	184,29	6,46	167,44
Оксид азота NO	1,28	33,18	51,29	1329,44
Оксид углерода СО	12,82	332,29	427,38	11077,69
Зола	128,1	3320,35	4,27	110,68

4. Сопоставим фактические выбросы с предельно допустимыми, для чего рассмотрим данные табл. 9. Поскольку фактические выбросы сернистого ангидрида SO₂, оксида азота, оксида углерода меньше предельно допустимых значений, то плату за загрязнение окружающей среды этими веществами рассчитываем по формуле (1.1).

Выбросы диоксида азота и золы больше ПДВ, следовательно, расчёт платы за загрязнение атмосферного воздуха этими веществами производим по формуле (1.2), т. к. на выбросы всех указанных веществ получено разрешение (по условию примера).

5. Рассчитаем плату за загрязнение воздуха сернистым ангидридом по формуле (1.1) для 2004 года:

$$\Pi^{SO2} = M_{\varphi}^{SO2} \cdot \coprod^{SO2} \cdot K_{\scriptscriptstyle \mathrm{H}} \cdot K_{\scriptscriptstyle 9}$$
, руб./год.

Здесь $M_{\phi}^{SO2} = 110,68$ т/год (из табл. 9);

 $K_{\text{и}}$ — коэффициент индексации, $K_{\text{и}}$ = 1,1;

 ${\rm K}_{\scriptscriptstyle 9}$ — коэффициент экологической ситуации, для г. Ростова-на-Дону ${\rm K}_{\scriptscriptstyle 9}=1,6\cdot 1,2=1,92.$

$$\Pi^{SO2} = 21 \cdot 110,68 \cdot 1,1 \cdot 1,92 = 4908,9$$
 руб./год.

6. **Рассчитаем плату за загрязнение воздуха оксидом азота** по формуле (1.1):

$$\Pi^{NO} = M_{\varphi}^{\ NO} \cdot \coprod^{NO} \cdot K_{^{_{\text{\scriptsize M}}}} \cdot K_{_{9}},$$
 руб./год.

$$M_{\phi}^{NO} = 33,18$$
 т/год; Ц $^{NO} = 35$ руб./т;

$$\Pi^{\text{NO}} = 33,18 \cdot 35 \cdot 1,1 \cdot 1,92 = 2452,7$$
 руб./год.

7. **Рассчитаем плату за загрязнение воздуха оксидом углерода** по формуле (1.1):

$$\Pi^{CO}=M_{\varphi}^{\quad CO}\cdot \Pi^{CO}\cdot K_{\text{m}}\cdot K_{\text{9}}, \text{ руб./год.}$$

$$M_{\varphi}^{CO}=332,\!29\,\,\text{т/год};\, \Pi^{CO}=0,\!6\,\,\text{руб./т};$$

$$\Pi^{CO}=332,\!29\,\cdot\,0,\!6\cdot1,\!1\cdot1,\!92=421,\!1\,\,\text{руб./год.}$$

8. Рассчитаем плату за загрязнение воздуха диоксидом азота NO_2 по формуле (1.2):

$$\Pi^{NO2} = M_{\Pi ДB}{}^{NO2} \cdot \boldsymbol{L}^{NO2} \cdot \boldsymbol{K}_{\scriptscriptstyle \text{M}} \cdot \boldsymbol{K}_{\scriptscriptstyle \text{9}} + (M_{\boldsymbol{\varphi}}{}^{NO2} - M_{\Pi ДB}{}^{NO2}) \cdot \boldsymbol{5} \,\, \boldsymbol{L}^{NO2} \cdot \boldsymbol{K}_{\scriptscriptstyle \text{M}} \cdot \boldsymbol{K}_{\scriptscriptstyle \text{9}}, \, \text{руб./год.}$$

Из табл. 9 следует, что:

$$M_{\Pi Д B}{}^{NO2} = 167,\!44$$
 т/год; $M_{\varphi}{}^{NO2} = 184,\!28$ т/год.

$$\Pi^{\text{NO2}} = 167,44 \cdot 52 \cdot 1,1 \cdot 1,92 + (184,29 - 167,44) \cdot 5 \cdot 52 \cdot 1,1 \cdot 1,92 =$$
 = 27 641,6 руб./год.

9. Рассчитаем плату за загрязнение воздуха золой по формуле (1.2):

$$\Pi^3 = M_{\Pi Д B}{}^3 \cdot \coprod^3 \cdot K_{\scriptscriptstyle H} \cdot K_{\scriptscriptstyle 9} + (M_{\varphi}{}^3 - M_{\Pi Д B}{}^3) \cdot 5 \, \coprod^3 \cdot K_{\scriptscriptstyle H} \cdot K_{\scriptscriptstyle 9}, \, pyб./год.$$

Из табл. 9 следует, что $M_{\Pi Д B}^3 = 110,68$ т/год, $M_{\phi}^3 = 3320,35$ т/год.

$$\Pi^3 = 110,68 \cdot 103 \cdot 1,1 \cdot 1,92 + (3320,35 - 110,68) \cdot 5 \cdot 103 \cdot 1,1 \cdot 1,92 =$$
 =3 515 170,8 руб./год.

10. Определяем общую плату за загрязнение воздушной среды по формуле (1.4):

$$4,9 + 2,45 + 0,42 + 27,64 + 3515,17 = 3550,6$$
 тыс. руб./год.

Таким образом, из полученных данных следует, что:

- 1) наибольшую величину составляет плата за выбросы веществ NO_2 и золы, количество которых превышает $M_{\Pi Д B}$;
- 2) основная доля платежей (98,9 %) приходится на плату за загрязнение окружающей среды золой;

- 3) плата за выбросы, превышающие $M_{\Pi Д B}$, составляет: 27,64+3515,17=3542,81 тыс. руб./год и осуществляется из прибыли предприятия;
- 4) для увеличения прибыли предприятия следует провести внедрение мероприятий по снижению выбросов диоксида азота и золы.

Пример 2.2 При реконструкции котельной были смонтированы золоуловители, позволившие снизить фактические выбросы золы до $M_{\Pi Д B}$. Рассчитать плату котельной за загрязнение окружающей воздушной среды по данным *примера 2.1*.

Так как выбросы золы уменьшатся до предельно допустимых значений, то плата за них составит 24,08 тыс. руб.

Тогда общая плата предприятия за загрязнение воздуха будет равна:

$$4,4 + 2,45 +0,42 +24,08 +27,61 = 59,5$$
 тыс. руб./год.

По сравнению с первоначальными данными будет сэкономлено:

$$3550,6 - 59,5 = 3491,1$$
 тыс. руб.

Пример 2.3 Определить, во сколько раз увеличатся платежи за загрязнение приземного слоя золой, если на предприятии вышли из строя золоуловители и фактические выбросы возросли на 20 % от $M_{\Pi Л B}$.

Так как $M_{\varphi}=1,2$ $M_{\Pi JB},$ то расчёт платы следует вести по формуле (1.2):

$$\Pi = M_{\Pi Д B} \cdot \coprod \cdot K_{\mu} \cdot K_{\flat} + (M_{\varphi} - M_{\Pi Д B}) \cdot 5 \coprod \cdot K_{\mu} \cdot K_{\flat} =$$

$$= M_{\Pi Д B} \cdot \coprod \cdot K_{\mu} \cdot K_{\flat} + (1,2 M_{\Pi Д B} - M_{\Pi Д B}) \cdot 5 \coprod \cdot K_{\mu} \cdot K_{\flat} =$$

$$= 2 M_{\Pi Д B} \cdot \coprod \cdot K_{\mu} \cdot K_{\flat}.$$

Таким образом, плата за загрязнение приземного слоя атмосферы золой в данном случае увеличится вдвое.

КОНТРОЛЬНОЕ ЗАДАНИЕ

1. Рассчитать плату за загрязнение воздуха і-м веществом при сжигании топлива в котлах, если известны высота дымовой трубы H, объёмный расход дымовых газов $V_{\text{д.г.}}$ и коэффициент, учитывающий рельеф местности з. Котельная расположена в районе города N. Принять, что фактические выбросы M_{ϕ} равны предельно допустимым $M_{\Pi ZB}$.

2. Рассчитать, как изменится плата за загрязнение воздуха і-м веществом, если фактические выбросы увеличатся в m раз.

Исходные данные для расчётов выбрать по соответствующему варианту (табл. 11).

Таблица 11- Исходные данные по вариантам

№ варианта	V _{д.г.} , м ³ /с	Высота трубы, Н,	Загрязняю щее	Z	Город N	т, раз
варнанта		труоы, 11, м	атмосферу			
		IVI	вещество			
1	2	3	4	5	6	7
1	3	15	Зола	2	Нижний	2
1		13	Зола	2	Новгород	2
2	3	30	то же	1	то же	2
3	3	45	_"_	2	_"_	2
4	3	60	_''_	- 1	_"-	2
5	3	75	_''_	2	_"-	2
6	4	12,5	SO_2	2	Архангельск	1,5
7	4	25,0	то же	1	то же	1,5
8	4	37,5	_"_	2	_''_	1,5
9	4	50,0	_"_	1	_''_	1,5
10	4	62,5	_"_	2	_"_	1,5
11	5	17,5	NO ₂	1	Астрахань	1,8
12	5	35	то же	2	то же	1,8
13	5	52,5	-"-	1	_''_	1,8
14	5	70	-"-	2	_"-	1,8
15	5	87,5	-"-	1	_"-	1,8
16	6	22,5	CO	1	Туапсе	2,3
17	6	45,0	то же	2	то же	2,3
18	6	67,5	-"-	1	_"-	2,3
19	6	20,0	-"-	2	_''_	2,3
20	6	112,5	-"-	1	_''_	2,3
21	3,5	10	Зола	1	Москва	2,2
22	3,5	20	-"-	2	то же	2,2
23	3,5	30	-"-	1	_''_	2,2
24	3,5	40	_''_	2	_''_	2,2
25	3,5	50	-"-	1	_''_	2,2
26	4,5	15	SO_2	1	Брест	3,0
27	4,5	25	то же	2	то же	3,0
28	4,5	35	-"-	1	_''_	3,0
29	4,5	45	-"-	2	_''_	3,0
30	4,5	55	-"-	1	_''_	3,0

Библиографический список

- 1. О нормативах платы за выбросы в атмосферный воздух загрязняющих веществ стационарными и передвижными источниками, сбросы загрязняющих веществ в поверхностные и подземные водные объекты, размещение отходов производства и потребления : постановление Правительства РФ от 12.06.2003 № 344.
- 2. Гарин В.М. Промышленная экология: учеб./В.М. Гарин, И.А. Клёнова, В.И. Колесников; РГУПС.– Ростов н/Д: Феникс, 2003.