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1. Introduction 

Thermal properties of heterogeneous materials have been studied since XIX century. Comprehensive literature reviews

were given by Markov (20 0 0) (on thermal conductivity) and Sevostianov (2012) (on thermal expansion coefficients). In the

present work we derive the connection between anisotropic thermal conductivities and thermal expansion coefficients ac-

counting for information on the orientation distribution of the inhomogeneities (that can be obtained, for example, by the

implementation of Raman spectroscopy data into micromechanical homogenization models). To the best of our knowledge,

the earliest attempts to use analytical approaches accounting for inhomogeneities orientation have been done by Chou and

Nomura (1981) and Takao, Chou, and Taya (1982) , who considered randomly oriented fibers. Later, Benveniste (1987) used

this approach and implemented it in Mori–Tanaka scheme. Similar approach has been developed by Ferrari and John-

son (1989) and Ferrari and Marzari (1992) . 

To account for orientation distribution intermediates between fully random and perfectly aligned inhomogeneities, vari-

ous orientation distribution functions have been introduced. Lu and Liaw (1995) proposed to use the combination of Gaus-

sian and trigonometric distributions with respect to the Euler angles: φ, θ , and ϕ: 

P ( φ, θ, ϕ ) = P ( φ) P ( θ ) P ( ϕ ) ( 0 ≤ φ, θ, ϕ ≤ π) (1.1)

where 

P ( φ) = 

2 + cos ( 2 φ) 

2 π
, P ( θ ) = 

√ 

2 

π
exp 

(
−( θ − π/ 2 ) 

2 

2 

)
, 
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P ( ϕ ) = 

√ 

2 

π
exp 

(
−( ϕ − π/ 2 ) 

2 

2 

)
(1.2) 

To evaluate the themal conductivity of a transversly isotropic material, Chen and Wang (1996) proposed to use the fol-

lowing orientation distribution function 

P ( θ ) = 1 − exp ( λθ ) (1.3) 

Pettermann, Böhm, and Rammerstorfer (1997) used exponential orientation distribution function 

P ( θ ) = exp 

(
−θ2 / 2 λ2 

)
(1.4) 

and implemented it in Mori–Tanaka scheme. Sevostianov and Kachanov (1999) described transversly isotropic orientation

distribution of cracks using the folloing function: 

P λ( ϕ ) = 

1 

2 π

[(
λ2 + 1 

)
e −λϕ + λe −λπ/ 2 

]
(1.5) 

Note that the orientation distribution as well as the shape of the inhomogeneities affect both thermal conductivity

and thermal expansion coefficient in a similar manner and, therefore, they can be linked to each other (as discussed by

Sevostianov & Kachanov, 2009 ). Anisimova, Knyazeva, and Sevostianov (2016) derived the cross-property connection for alu-

minum containing diamond particles and verified it experimentally. Kováčik, Emmer, and Bielek (2016) reported experimen-

tal data on the connection between isotropic thermal, electric, and mechanical properties of copper-graphite composites.

Mazloum, Kováčik, Emmer, and Sevostianov (2016) developed a micromechanical model for these observations. In all these

papers the overall properties of the composites have been isotropic. In the present paper, we focus on the overall trans-

verse isotropy of a material containing transversely-isotropic graphite flakes that have a certain preferential orientation

varying from perfect alignment to fully random distribution. The theoretical results are compared with experimental data of

Boden (2015) and Firkowska et al. (2015) . 

2. Background material: property contribution tensors 

Property contribution tensors are introduced to describe the input from an inhomogeneity to the overall property of

interest. In the context of elastic properties, compliance contribution tensor H has been first introduced by Horii and Nemat-

Nasser (1983) for ellipsoidal pores and cracks. Sevostianov and Kachanov (2002) proposed to use conductivity and resistivity

contribution tensors K and R to describe overall thermal or electric conductivities of heterogeneous materials. Below, we

brieflydescribe their approach. Assuming a linear dependence between the temperature gradient ∇T and the remote heat

flux q 0 , the extra temperature gradient required to keep the same heat flux over reference volume V in the presence of the

inhomogeneity of volume V 1 < < V is 

�(∇T ) = 

V 1 

V 

R · q 

0 (2.1) 

where R is the inhomogeneity’s resistivity contribution tensor (a symmetric second-rank tensor). A dual conductivity con-

tribution tensor can be introduced in a similar manner: 

�q = 

V 1 

V 

K · ( ∇T ) 
0 

(2.2) 

where ( ∇T ) 0 is the remotely applied temperature gradient. 

For an isotropic matrix of conductivity k 0 , the resistivity and conductivity contribution tensors are interrelated by 

K = −k 2 0 R (2.3) 

For a spheroidal transversely-isotropic inhomogeneity (axes of its geometrical and material symmetries coincide) em- 

bedded in an isotropic matrix, the resistivity and conductivity contribution tensors have the following form ( Sevostianov &

Giraud, 2013 ): 

R = − 1 

k 2 
0 

K = 

1 

k 0 
[ A 1 ( I − nn ) + A 2 nn ] (2.4) 

where dimensionless parameters A 1 and A 2 are expressed as: 

A 1 = 

1 − k 1 11 / k 0 

1 −
(
1 − k 1 

11 
/ k 0 

)
f 0 

, A 2 = 

1 − k 1 33 / k 0 

k 1 
33 

/ k 0 + 2 

(
1 − k 1 

33 
/ k 0 

)
f 0 

(2.5) 

and shape factor f 0 is given by formula (A.10) in the Appendix . 

The thermal expansion contribution tensor of an inhomogeneity A ij has been introduced by Sevostianov (2012) as an

extra strain over volume V produced by prescribed temperature change �T due to the presence of the inhomogeneity: 

ε i j = α0 
i j �T + 

V 1 
A i j �T (2.6) 
V 
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This additional strain can be expressed as follows ( Sevostianov, 2012 ): 

�ε i j = A i j �T = H i jkl 

(
S 1 klmn − S 0 klmn 

)−1 (
α1 

mn − α0 
mn 

)
�T (2.7)

where S 1 
klmn 

and S 0 
klmn 

are respectivly compliances of the inhomogeneity and the matrix and H ijkl is the compliance contri-

bution tensor of the inhomogeneity (see the Appendix ). For transversely isotropic spheroidal inhomogeneities, tensor A has

the following form ( Mazloum et al., 2016 ): 

A = α0 [ M 1 I + ( M 2 − M 1 ) nn ] (2.8)

where 

M 1 = 

w 2 

(
α1 

11 − α0 

)
− w 3 

(
α1 

33 − α0 

)
2 α0 ( w 1 w 2 − w 3 w 4 ) 

; M 2 = 

w 1 

(
α1 

33 − α0 

)
− w 4 

(
α1 

11 − α0 

)
α0 ( w 1 w 2 − w 3 w 4 ) 

(2.9)

and expressions for factors w i are given in the Appendix by formula (A.13) . 

3. Calculations of the effective thermal properties of anisotropic composites 

In the case of multiple inhomogeneities, extra temperature gradient due to k th inhomogeneity required to keep the same

remote heat flux is �( ∇ T (k ) ) = 

V k 
V R 

(k ) · q 0 so that the total extra resistivity due to all the inhomogeneities is given by 

� r = 

1 

V 

∑ 

V k R 

( k ) (3.1)

Strictly speaking, R 

( k ) tensors in ( 3.1 ) are affected by the interaction between inhomogeneities. However, as discussed by

Kachanov and Sevostianov (2005) , it is much more practical to take R 

( k ) tensors in the non-interaction approximation and

use one of the homogenization schemes to describe the interaction. Such schemes place the non-interacting inhomogeneities

into some sort of effective environment (effective matrix or effective field) and can be formulated in terms of R -tensors for

non-interacting inhomogeneities. Formula ( 3.1 ) highlights the fundamental importance of the property contribution tensors:

it is them, which have to be summed up in the context of the effective material properties. The sums 

1 

V 

∑ 

V k R 

( k ) and 

1 

V 

∑ 

V k K 

( k ) (3.2)

properly reflect resistivity/conductivity contributions of individual inhomogeneities into the overall properties. 

Similarly, the total extra thermal expansion is given by 

�α = 

1 

V 

∑ 

V k A 

( k ) (3.3)

Each of the sums in (3.2) and (3.3) constitutes the general microstructural parameters in the context of the effective

thermal properties. If all the inhomogeneities are of the same shape and size, summations in (3.1)–(3.3) may be replaced by

integrations over orientations of the inhomogeneities. 

3.1. Non-interaction approximation (NIA) 

When the interaction between individual inhomogeneities is disregarded, every inhomogeneity can be considered as an

isolated one. Then, replacing summation by integration over orientations, as discussed above, yields 

∇T = 

1 

k 0 
q 

0 + c · 〈 R 〉 · q 

0 (3.4)

where c is the volume fraction of the inhomogeneities, 

〈 R 〉 = 

1 

k 0 
[ A 1 I + ( A 2 − A 1 ) 〈 nn 〉 ] (3.5)

and n is a unit vector along the i th spheroid’s symmetry axis that is expressed in polar coordinates 0 ≤φ ≤π /2 and

0 ≤ θ ≤ 2 π ( Fig. 1 ) as follows 

n ( ϕ, θ ) = cos θ sin ϕ e 1 + sin θ sin ϕ e 2 + cos ϕ e 3 (3.6)

The average tensor 〈 nn 〉 can be calculated using the orientaintion distribution function as follows: 

〈 nn 〉 = 

2 π∫ 
0 

[ π/ 2 ∫ 
0 

P ( ϕ ) · nn · sin ϕ · dϕ 

] 

· dθ (3.7)

The exact form of function P ( ϕ) does not produce a major effect on the overall properties ( Kachanov et al., 1994 ). In the

present paper we use the orientation distribution function introduced by Sevostianov and Kachanov (1999) (to simplify the

process of comparison with the experimental data of Boden (2015) ): 

P μ( ϕ ) = 

1 

2 π

[(
μ2 + 1 

)
e −μϕ + μe −μπ/ 2 

]
(3.8)
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Fig. 1. Representation of vector n in the spherical coordinates used in Eq. (3.6) . 

2
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6
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0 ϕ

P(μ = 1)                                  P(μ = 2.5) 

P(μ = 3.5)                                P(μ = 6)

Fig. 2. Representation of scattering parameter μ. 

 

 

 

 

where μ represents the scattering parameter (see Fig. 2 ). It plays the following role: if μ approaches zero, then the graphite

flakes tend to be randomly oriented. As μ increases, the scatter decreases and when μ is about 3 the preferential orientation

of the inhomogeneities can be identified. As μ approaches infinty the graphite flakes are pefectly alligned (actually, already

at μ = 6 , the orientation of the flakes is very close to the prefect alignmnet, as shown in Fig. 2 ). The average tensors 〈 nn 〉
can be represented in the following form: 

〈 nn 〉 = β1 ( e 1 e 1 + e 2 e 2 ) + β3 ( e 3 e 3 ) = β1 I + ( β3 − β1 ) e 3 e 3 (3.9) 
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where 

β1 = π ·
π/ 2 ∫ 
0 

P (ϕ) · sin 

3 ϕ · dϕ = 

18 − μ
(
3 + μ2 

)
e 

μπ
2 

6 

(
9 + μ2 

) (3.10)

β3 = 2 π ·
π/ 2 ∫ 
0 

P (ϕ) · cos 2 ϕ · sin ϕ · dϕ = 

(
3 + μ2 

)
e 

μπ
2 

(
μ + 3 e 

μπ
2 

)
3 

(
9 + μ2 

) (3.11)

Then, the effective resistivity in the framework of non-interaction approximation has the following form: 〈
R 

N I 
〉
= 

c 

k 0 
[ ( A 1 + ( A 2 − A 1 ) β1 ) I + ( A 2 − A 1 ) ( β3 − β1 ) e 3 e 3 ] ≡ c 

k 0 
η (3.12)

where A 1 and A 2 are given by ( 2.5 ). Then, the effective conductivities in the plane of isotropy and transverse direction are 

k e f f 
11 

= 

k 0 
1 + c η11 

; k e f f 
33 

= 

k 0 
1 + c η33 

(3.13)

In the same manner, the average strain produced by temperature change in the volume containing multiple homo-

geneities is 

ε = α0 T [ I + c · 〈 A 〉 ] (3.14)

Implementation of the expressions (2.8) and (3.7) yields 

ε = α0 [ I + c ( M 1 + ( M 2 − M 1 ) β1 ) I + c ( M 2 − M 1 ) ( β3 − β1 ) e 3 e 3 ] �T 

≡ α0 [ I + cζ] �T (3.15)

where M 1 and M 2 are given by (2.9) . Then, the effective thermal expansion coefficients in the plane of isotropy and trans-

verse direction are expressed as follows: 

αe f f 
11 

= α0 [ 1 + c · ζ11 ] , αe f f 
33 

= α0 [ 1 + c · ζ33 ] (3.16)

Non-interaction approximation serves as the basic building block for various micromechanical homogenization schemes.

Below we illustrate it on an example of Maxwell homogenization scheme. 

3.2. Maxwell’s scheme 

In his original work, Maxwell (1873) considered a large sphere with the unknown effective conductivity k eff embedded

in the background material of conductivity k 0 and containing non-interacting small spheres of conductivity k 1 and volume

fraction c . He calculated the far-field asymptotics of the perturbation of the externally applied electric field in two different

ways: (1) as a sum of far-fields generated by the small spheres, and (2) as the far-field generated by the large sphere.

Equating the two yields the effective conductivity k eff. Sevostianov and Giraud (2013) reformulated Maxwell’s scheme in

terms of property contribution tensors for the general case of anisotropic materials. It can be written as follows: 

1 

r 0 
r e f f = I + 

[ 
1 

c 
η−1 − r 0 Q 

�
] −1 

= I + c η
[
I − c r 0 η · Q 

�
]−1 

(3.17)

where Q 

� is 2nd rank Hill’s tensor (Hill’s tensor for conductivity problem) calculated for the effective domain � (its com-

ponents strongly depend on the shape of � as shown in the Appendix —see formula (A.12) ). Sevostianov (2014) suggested a

method to evaluate the shape of � (numerically verified by Kushch and Sevostianov, (2016) ). In our case, � is a spheroid

with the aspect ratio  = η11 / η33 . After some algebra, the effective thermal conductivities in the plane of isotropy and in

the transverse direction can be respectively formulated as follows: 

k e f f 
11 

= k 0 
1 − c �11 

1 + c ( η11 − �11 ) 
·; k e f f 

33 
= k 0 

1 − c �33 

1 + c ( η33 − �33 ) 
· (3.18)

where � = r 0 η · Q 

�. 

Tensor of the effective thermal expansion coefficient can be calculated using the approach introduced by

Sevostianov (2012) . In the case of interest, the thermal expansion coefficients tensor can be expressed as follows: 

1 

α0 

αe f f = I + 

[ 
1 

c 
ζ−1 − ˜ Q 

�
] −1 

= I + cζ ·
[ 

I − c 

α0 

ζ ˜ Q 

�
] −1 

(3.19)

where the second rank tensor ˜ Q 

�
is expressed in terms of the fourth-rank Hill’s tensor for elasticity problem 

ˆ Q 

�
and

differences in thermal expansion ( α1 − α0 ) and elastic compliances ( S 1 − S 0 ) of two materials: 

˜ Q 

� = ( α1 − α0 ) 
−1 : ( S 1 − S 0 ) : ˆ Q 

�
(3.20)
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Components of tensor ˆ Q 

�
are given in the Appendix by ( A.9 ). Generally, the shape of � depends on the problem of

interest (it is one of the main disadvantages of the Maxwell scheme). Due to that, the aspect ratio in the problem of thermal

expansion has to be calculated from the compliance contribution tensors. The difference, however, is mild and we used

 = η11 / η33 for thermal expansion problem as well. Predictions of the NIA and Maxwell homogenization scheme will be

compared with the experimental data in Section 5 . 

4. Cross-property connections 

Cross-property connections link changes in different physical properties of materials due to the presence of inhomo-

geneities, or, more generally—due to development of microstructure. The existance of the relations of this kind is based on

the possibility to express two different properties in terms of the same microstructural parameter. The detailed review of

the history of cross-property connections is given by Sevostianov and Kachanov (2009) . Mazloum et al. (2016) established

cross-property connection between thermal expansion coefficient and thermal and electrical conductivities of two-phase 

macroscopically isotropic composites. In the present work, we use the results presented in the previous section to establish

connections between anisotropic tensors of thermal conductivity and thermal expansion coefficients. 

We start from rewriting the expressions for overall thermal properties obtained in the previous Section in somewhat

different form. In the context of non-interaction approximation, the overall thermal resistivity tensor can be written as 

r e f f = r 0 I + c 〈 R 〉 = r 0 I + c 
1 

k 0 
[ A 1 I + ( A 2 − A 1 ) 〈 nn 〉 ] (4.1) 

where coefficients A 1 and A 2 are given by ( 2.5 ). The thermal expansion coefficients tensor is: 

αe f f = α0 I + c 〈 A 〉 = α0 I + cα0 [ M 1 I + ( M 2 − M 1 ) 〈 nn 〉 ] (4.2) 

with coefficients M 1 and M 2 given by ( 2.9 ). Factors A i and M 

i 
depend on the material properties and shapes of the in-

homogeneities. If inhomogeneities are spheroids and their aspect ratios are not correlated with either orientations of the

inhomogeneities or their volumes, coefficients A i and M 

i 
can be replaced by their averages and taken out of the summation.

Then tensors r e f f and αe f f are expressed in terms of the same second rank symmetric tensor 

ω = 

1 

V 

∑ 

k 

V 

( k ) ( nn ) ( 
k ) = c 〈 nn 〉 = c [ β1 I + ( β3 − β1 ) e 3 e 3 ] (4.3) 

(note that tr ( ω) is the volume fraction of the inhomogeneities c ) as follows: 

r e f f = r 0 I + r 0 ( c a 1 I + ( a 2 − a 1 ) ω ) (4.4) 

αe f f = α0 I + α0 ( c m 1 I + ( m 2 − m 1 ) ω ) (4.5) 

Coefficients a i and m i are average shape factors for the thermal conductivity and coefficient of thermal expansion (CTE)

problems: 

a i = 

∞ ∫ 
0 

A i ( γ ) p ( γ ) dγ m i = 

∞ ∫ 
0 

M i ( γ ) p ( γ ) dγ (4.6) 

where p ( γ ) is the shape distribution density. 

To derive cross-property connection between the tensors of the overall thermal resistivity and thermal expansion, it is

more convenient to represent the tensors as the sums of their volumetric and deviatoric parts. Then 

1 

r 
0 

r e f f − I = cη = 

c 

3 

( a 2 + 2 a 1 ) I + ( a 2 − a 1 ) ω 

′ (4.7) 

1 

α
0 

αe f f − I = cζ = 

c 

3 

( m 2 + 2 m 1 ) I + ( m 2 − m 1 ) ω 

′ (4.8) 

Where prime indicates the deviatoric parts. Eliminating now c and ω 

′ we get explicit cross-property connection between

thermal and electrical properties.: 

1 

α 0 
αe f f 

i j 
− δi j = 

2 m 1 + m 2 

2 a 1 + a 2 

(
1 

3 r 0 
r e f f 

kk 
− 1 

)
δi j + 

m 2 − m 1 

a 2 − a 1 

1 

r 0 
r ′ e f f 

i j 
(4.9) 

where r 
′ e f f 
i j 

is deviatoric part of tensor r 
e f f 
i j 

. This connection is exact in the framework of non-interaction approximation. In

general 
2 m 1 + m 2 
2 a 1 + a 2 and 

m 2 −m 1 
a 2 −a 1 

are shape dependent. 

Expressions ( 3.17 ) and ( 3.19 ) yield the connection between effective thermal expansion and thermal resistivity tensors in

the framework of Maxwell scheme. Indeed, introducing notations 

˜ r 11 ≡
r e f f 

11 
− r 0 

r 0 
[
1 + Q 

�
11 

(
r e f f 

11 
− r 0 

)] ; 1 → 2 → 3 (4.10) 
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3 μm 250 μm5μm

50 μm

(a)

(c)

(b)

Fig. 3. (a) SEM image of copper powder, (b) SEM image of a graphite flake and its thickness; (c) SEM image of Cu-graphite composite at a specimen’s 

fractural cross section with the preferable direction of alignment ( Boden, 2015 ). 

 

 

 

 

 

 

 

 

 

we can express 

c ηi j = 

˜ r i j , (4.11)

or, representing both sides in terms of the sums of volumetric and deviatoric parts, 

c 

3 

( a 2 + 2 a 1 ) δi j + ( a 2 − a 1 ) ω 

′ 
i j = 

1 

3 

˜ r kk δi j + ̃

 r ′ i j (4.12)

This expression, together with ( 3.19 ) yields the desired cross-property connection: 

1 

α
0 

αe f f − I = � ·
[ 

I − α0 � · ˜ Q 

�
] −1 

(4.13)

where 

� = 

(
m 2 + 2 m 1 

)
3 

(
a 

2 
+ 2 a 

1 

) tr ( ̃  r ) I + 

(
m 2 − m 1 

)(
a 

2 
− a 

1 

) ˜ r ′ (4.14)

and tr( ̃  r ) is trace of dimensionless tensor ˜ r introduced by (4.10) and ˜ r ′ is its deviatoric part. 

5. Copper containing graphite flakes 

In this section we validate our approach using experimental data of Boden (2015) and Firkowska et al. (2015) on copper-

graphite composites that possess thermal conductivity up to 1.4 times higher than those of copper and low thermal expan-

sion (comparable with the thermal expansion of semiconductors, Boden, 2015; Tong, 2011 ). In the work of Boden (2015) and

Firkowska et al. (2015) , copper-graphite composites with volume fraction of graphite flakes varying from 0.08 to 0.5 were

prepared using high energy ball milling to mix the copper powder with an approximate particle size 3 μm ( Fig. 3 a) with
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8%          20%         40 & 50%         

(b)

Fig. 4. Polar plot of the G peak intensity of composites containing different volume fractionsa of graphite flakes over the polarization angle. 

Table 1 

The values of μ for different 

grapihite flakes vol.%. 

Graphite flakes vol.% μ

8 2.4 

20 2.6 

40 2.8 

50 2.8 

Table 2 

Experimentally measured thermal properties of copper- graphite composite in dependence on volume fraction of graphite (c). 

Graphite vol.% 

Thermal 

conductivity In 

isotropy plane 

Thermal 

conductivity in 

transverse direction CTE In isotropy plane 

CTE in transverse 

direction Alignment 

C [W/mK] [W/mK] [10 ̄6 K ̄¹] [10 ̄6 K ̄¹] % 

0 340 340 17.43 17.44 0 

8 300 200 16.59 17.10 54 

20 338 143 15.58 16.82 58 

40 481 65 14.35 4.93 80 

50 504 47 12.11 1.96 80 

 

 

 

 

 

 

 

 

 

G300 micro-graphite flakes of an approximate flake lateral length 300μ and 5μ of thickness ( Fig. 3 b). Consolidation of Cu-

graphite composites was obtained by spark plasma sintering. After the specimens were prepared ( Fig. 3 c), a Raman spec-

trum was applied and the intensity of G-line was determined according to the angle of polarization due to the orientation

of graphite planes of isotropy (see Fig. 4 ). This dependence was used to calculate the orientation distribution of graphite

flakes. The values of the scattering parameter μ for different graphite flakes volume fractions are given in Table 1 . 

Thermal conductivities have been measured using guarded hot plate method in two directions—parallel to the plane of

isotropy (basal plane) and transverse direction. Thermal expansion coefficients have been measured using a dilatometer. All

thermal measurements are provided in Table 2 . Due to the orientation of the graphite flakes, the carryover effect of its in

isotropy plane CTE influenced the entire composite, which made the composites’ CTEs in both directions (in isotropy plane

and transverse direction) decreasing as the volume fraction of graphite flakes increases ( Table 2 ). Material constants of the
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Table 3 

Material constants of the constituents. 

Constituent Copper Graphite 

Thermal conductivity (1) 

k 11 = k 22 340 W/m K 1500 W/m K 

k 33 15 W/m K 

Thermal expansion coefficient (1) 

α11 = α22 17.5 × 10 −6 K −1 (1) −1.5 × 10 −6 K −1 (3) 

α33 28 × 10 −6 K −1 (3) 

Modulus of elasticity 

E 11 = E 22 124 GPa (2) 1109 GPa (4) 

E 33 38.7 GPa (4) 

Bulk modulus 

K 140 GPa (2) 36.4 GPa (4) 

Shear modulus 

G 11 = G 22 44 GPa (2) 485 GPa (4) 

G 33 5 GPa (4) 

Poisson’s ratio 

ν12 0.35 (2) 0.12 (4) 

ν13 0.01 (4) 

Elastic stiffness (5) 

C 1111 192.47 GPa 920 GPa 

C 1122 105.7 GPa 33 GPa 

C 1313 43.17 GPa 2.3 GPa 

C 3333 192.47 GPa 30 GPa 

C 1133 105.7 GPa 0 GPa 

(1) Boden (2015) . 
(2) Ledbetter and Naimon (1974) . 
(3) Nelson and Riley (1945) . 
(4) Bosak, Krisch, Mohr, Maultzsch, and Thomsen (2007) . 
(5) Chen (1993) . 
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Fig. 5. Comparison of the thermal conductivities calculated by (a) Non-interaction approximation and (b) Maxwell’s scheme with the experimental data. 

Group (1) lines are for thermal conductivities in the plane of isotropy. Group (2) lines are for thermal conductivities in transverse direction. 

 

 

 

composite constituents are presented in Table 3 . Figs. 5 and 6 illustrate comparisons of the predictions provided by (a)

non-interaction approximation (formulas ( 3.13 ) and ( 3.16 )) and (b) Maxwell’s scheme (formulas ( 3.18 ) and ( 3.19 )) with the

experimental data of thermal conductivities and thermal expansion coefficients, respectively. For cross-property connection,

evaluations of Eqs. (4.9 ) and ( 4.13 ) with experimental data are illustrated in Fig. 7 . 
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Fig. 6. Comparison of the thermal expansion coefficients calculated by (a) Non-interaction approximation and (b) Maxwell’s scheme with the experimental 

data. Group (1) lines are for CTE in the plane of isotropy. Group (2) lines are for CTE in transverse direction. 
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Fig. 7. Comparison of the cross-property connection ( 4.9 ) and ( 4.13 ) with experimental data (a) Non-interaction approximation, plane of isotropy; (b) 

Maxwell’s scheme, plane of isotropy; (c) Non-interaction approximation, transverse direction; (d) Maxwell’s scheme, transverse direction. 
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6. Concluding remarks 

The paper addresses effective thermal properties of anisotropic two-phase materials. We emphasize that the problem of

calculation of the anisotropic effective properties of a composite is closely related to the one of quantitative characterization

of composite microstructure—identification of microstructural parameters, in its terms the tensors of the thermal conduc-

tivity and thermal expansion are to be expressed. These proper microstructural parameters should represent the individual

inhomogeneities in accordance with their contributions to the properties ( Kachanov & Sevostianov, 2005 ). We explicitly

derived these parameters and expressed effective thermal properties of a composite in their terms. 

Our results are given in closed form that explicitly reflects shapes of inhomogeneities and their orientation distribution.

They are derived in the non-interaction approximation and in the frameworks of the Maxwell homogenization scheme. It

is shown that the Maxwell scheme properly predicts behavior of the heterogeneous material at high limit of the inhomo-

geneities. We also derived cross-property connections between anisotropic tensors of thermal conductivity and thermal ex-

pansion of a two-phase composite. The established cross-property connections are important for various applications such as

heat sinks, especially when high conductivity in basal plane direction and low thermal expansion coefficient are the require-

ments. Note that thermal conductivities and CTEs depend on one another and are governed by the same microstructural pa-

rameters. It makes the optimization of these properties only possible through the cross-property connections. We compared

our derivation with the experimental data for copper graphite composite obtained by Boden (2015) and Firkowska (2015) .

The agreement is generally very good. 
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Appendix. Tensor basis in the space of transversely isotropic fourth rank tensors. Representation of certain 

transversely isotropic tensors in terms of the tensor basis 

The operations of analytic inversion and multiplication of fourth rank tensors are conveniently done in terms of special

tensor bases that are formed by combinations of unit tensor δij and one or two orthogonal unit vectors ( Kunin, 1983; Kanaun

& Levin, 2007 ). In the case of the transversely isotropic elastic symmetry, the following basis is most convenient (it differs

slightly from the one used by Kanaun and Levin (2007) ): 

T ( 
1 ) 

i jkl 
= θi j θkl , T ( 

2 ) 
i jkl 

= 

(
θik θl j + θil θk j − θi j θkl 

)
/ 2 , T ( 

3 ) 
i jkl 

= θi j m k m l , T ( 
4 ) 

i jkl 
= m i m j θkl 

T ( 
5 ) 

i jkl 
= 

(
θik m l m j + θil m k m j + θ jk m l m i + θ jl m k m i 

)
/ 4 , T ( 

6 ) 
i jkl 

= m i m j m k m l (A.1)

where θi j = δi j − m i m j and m = m 1 e 1 + m 2 e 2 + m 3 e 3 is a unit vector along the axis of transverse symmetry. 

These tensors form the closed algebra with respect to the operation of (non-commutative) multiplication (contraction

over two indices): (
T ( α) : T ( β) 

)
i jkl 

≡ T ( 
α) 

i jpq 
T ( 

β) 
pqkl 

(A.2)

The inverse of any fourth rank tensor X , as well as the product X : Y of two such tensors are readily found in the closed

form, as soon as the representation in the basis 

X = 

6 ∑ 

k =1 

X k T 
( k ) , Y = 

6 ∑ 

k =1 

Y k T 
( k ) (A.3)

are established. Indeed: 

a) Inverse tensor X 

−1 defined by X −1 
i jmn 

X mnkl = ( X i jmn X 
−1 
mnkl 

) = J i jkl is given by 

X 

−1 = 

X 6 

2�
T ( 1 ) + 

1 

X 2 

T ( 2 ) − X 3 

�
T ( 3 ) − X 4 

�
T ( 4 ) + 

4 

X 5 

T ( 5 ) + 

2 X 1 

�
T ( 6 ) (A.4)

where � = 2( X 1 X 6 − X 3 X 4 ) . 

b) product of two tensors X : Y (tensor with ijkl components equal to X ijmn Y mnkl ) is 

X : Y = ( 2 X 1 Y 1 + X 3 Y 4 ) T 

( 1 ) + X 2 Y 2 T 

( 2 ) + ( 2 X 1 Y 3 + X 3 Y 6 ) T 

( 3 ) 

+ ( 2 X 4 Y 1 + X 6 Y 4 ) T 

( 4 ) + 

1 

2 

X 5 Y 5 T 

( 5 ) + ( X 6 Y 6 + 2 X 4 Y 3 ) T 

( 6 ) (A.5)

If x 3 is the axis of transverse symmetry, general transversely isotropic fourth-rank tensor, being represented in this basis 

�i jkl = 

∑ 

ψ m 

T m 

i jkl 

ЕВРОТЕХ
Выделение
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has the following components: 

ψ 1 = ( �1111 + �1122 ) / 2 ; ψ 2 = 2 �1212 ; ψ 3 = �1133 ; ψ 4 = �3311 ;
ψ 5 = 4 �1313 ; ψ 6 = �3333 (A.6) 

In particular: 

• Tensor of elastic compliances of the isotropic material S i jkl = 

∑ 

s m 

T m 

i jkl 
has the following components 

s 1 = 

1 − ν

4 G ( 1 + ν) 
; s 2 = 

1 

2 G 

; s 3 = s 4 = 

−ν

2 G ( 1 + ν) 
; s 5 = 

1 

G 

; s 6 = 

1 

2 G ( 1 + ν) 
(A.7) 

• Tensor of elastic stiffness of the isotropic material by C i jkl = 

∑ 

c m 

T m 

i jkl 
has components 

c 1 = λ + G ; c 2 = 2 G ; c 3 = c 4 = λ; c 5 = 4 G ; c 6 = λ + 2 G (A.8)

Where λ = 2 Gν/ ( 1 − 2 ν) . 

• Components of fourth-rank Hill’s tensor for elasticity problem 

ˆ Q 

�
are: 

q 1 = G 0 [ 4 κ − 1 − 2 ( 3 κ − 1 ) f 0 − 2 κ f 1 ] , q 2 = 2 G 0 [ 1 − ( 2 − κ) f 0 − κ f 1 ] 

q 3 = q 4 = 2 G 0 [ ( 2 κ − 1 ) f 0 + 2 κ f 1 ] , q 5 = 4 G 0 ( f 0 + 4 κ f 1 ) , 

q 6 = 8 G 0 ( κ f 0 − κ f 1 ) (A.9) 

f 0 = 

γ 2 ( 1 − g ) 

2 

(
γ 2 − 1 

) ; g ( γ ) = 

⎧ ⎨ 

⎩ 

1 

γ
√ 

1 −γ 2 
arctan 

√ 

1 −γ 2 

γ , oblateshape ( γ > 1 ) 

1 

2 γ
√ 

γ 2 −1 
ln 

γ + 
√ 

γ 2 −1 

γ −
√ 

γ 2 −1 
, prolateshape ( γ < 1 ) 

(A.10) 

For a thin (strongly oblate) spheroid ( a 1 = a 2 = a, γ ≡ a/ a 3 >> 1 ): g(γ ) → 

π
2 γ , f 0 → 

π
4 γ

f 1 = 

γ 2 

4 

(
γ 2 − 1 

)2 

[(
2 γ 2 + 1 

)
g − 3 

]
, κ = 1 / [ 2 ( 1 − ν0 ) ] (A.11) 

• Second rank Hill’s tensor (Hill’s tensor for conductivity problem) Q 

�: 

Q 

�
i j = k 0 

[
( 1 − f 0 ( γ ) ) δi j + ( 1 − 3 f 0 ( γ ) ) n i n j 

]
(A.12) 

• Expressions for w 1 , w 2 , w 3 and w 4 that used in the formulas of ( 2.9 ) are: 

w 1 = 

1 

2 

+ 

[
G 0 

(
S 1 1111 + S 1 1122 

)
− 1 − ν0 

2 ( 1 + ν0 ) 

]
[ 4 κ − 1 − 2 ( 3 κ − 1 ) f 0 − 2 κ f 1 ] 

+ 2 

[
G 0 S 

1 
1133 + 

ν0 

2 ( 1 + ν0 ) 

]
[ ( 2 κ − 1 ) f 0 + 2 κ f 1 ] 

w 2 = 1 + 8 κ

[
G 0 S 

1 
3333 −

1 

2 ( 1 + ν0 ) 

]
[ f 0 − f 1 ] 

+ 4 

[
G 0 S 

1 
3311 + 

ν0 

2 ( 1 + ν0 ) 

]
[ ( 2 κ − 1 ) f 0 + 2 κ f 1 ] 

w 3 = 2 

[
G 0 

(
S 1 1111 + S 1 1122 

)
− 1 − ν0 

2 ( 1 + ν0 ) 

]
[ ( 2 κ − 1 ) f 0 + 2 κ f 1 ] 

+ 8 κ

[
G 0 S 

1 
1133 + 

ν0 

2 ( 1 + ν0 ) 

]
[ f 0 − f 1 ] 

w 4 = 2 

[
G 0 S 

1 
1133 + 

ν0 

2 ( 1 + ν0 ) 

]
[ 4 κ − 1 − 2 ( 3 κ − 1 ) f 0 − 2 κ f 1 ] 

+ 2 

[
G 0 S 

1 
3333 −

1 

]
[ ( 2 κ − 1 ) f 0 + 2 κ f 1 ] (A.13) 
2 ( 1 + ν0 ) 
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