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A B S T R A C T

The stress-strain behavior of microcracked polycrystalline materials (such as ceramics or rocks) under condi-
tions of tensile, displacement-controlled, loading is discussed. Micromechanical explanation and modeling of
the basic features, such as non-linearity and hysteresis in stress-strain curves, is developed, with stable micro-
crack propagation and “roughness” of intergranular cracks playing critical roles. Experiments involving com-
plex loading histories were done on large- and medium grain size β-eucryptite ceramic. The model is shown
to reproduce the basic features of the observed stress-strain curves.

© 2018.

1. Introduction

We consider the behavior of brittle polycrystalline materials (such
as ceramics or rocks) that have certain amount of pre-existing inter-
granular microcracking, under tensile, displacement-controlled, load-
ing and unloading. Typically, these existing microcracks stem from
cooling from high temperatures, e.g. after sintering in ceramics [33],
and are due to the thermal expansion contrast, either between dif-
ferent phases or between different orientations of crystallites of the
same phase. Fig. 1 shows typical microcrack geometries in ceramics
and rocks; it is seen that microcracks have complex shapes that fol-
low grain boundaries and other weak surfaces in the microstructure
(that depend on the crystallography of the grains or domains [1–3]).
Furthermore, the microcrack faces possess certain “roughness” that
is dictated by orientation of the grains and presence of other phases
along the crack propagation path. During tensile loading, stable mi-
crocrack growth starts on most favorably oriented microcracks (nor-
mal to the loading direction) and that are sufficiently large. This re-
sults in non-linearity of the stress-strain curve. The non-linearity has

∗ Corresponding author.
Email address: igor@nmsu.edu (I. Sevostianov)

been shown to increase with loading (Fig. 2). Note that, although
microcrack propagation under displacement-controlled conditions is
generally stable, yet another possible factor contributing to the stabil-
ity is that, having to follow grain boundaries or other weak surfaces,
microcracks may run into geometries where the energy release rates
are substantially reduced (for example, T-intersections, Fig. 1).

Fig. 2 shows the stress-strain behavior of rocks and ceramics un-
der displacement-controlled tensile loading. Fig. 2a [4] refers to sev-
eral types of rocks; almost vertical drops indicate formation of exten-
sive microcrack networks within narrow range of applied strain; note
that this load-drop does not imply failure. Fig. 2b [5] reproduces the
data on cordierite subjected to tensile loading cycles with identical
peak stresses; the hysteresis observed in the first cycle (upper loop) al-
most vanishes in subsequent cycles. Fig. 2c [6] represents the data for
β-eucryptite subjected to a full loading-unloading cycle followed by
re-loading to a higher load compared to maximum load in the previous
cycle.

The following features of the stress-strain curves should be high-
lighted (Fig. 2):

(A) In the first loading, the curve “softens” and becomes non-linear.
Upon shifting to unloading, the slope of the curve increases no-
ticeably (“stiffer” response). At full unloading, certain residual
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Fig. 1. Typical microstructures of brittle microcracked polycrustalline materials: (a) aluminum titanite; (b) β-eucryptite; (c) cordierite; (d) silesian granite (from Ref. [31]). Arrows
(1) indicate locations of cracks following grain boundaries; arrows (2) point to roughness of crack faces.

Fig. 2. Stress-strain curves reported for (a) several rocks: 1 – akiyoshi marble, 2- sanjome andesite, 3- kuzu dolomite, 4 – kawazu tuff, 5 – tako sandstone (from Ref. [4]); (b) cordierite
(from Ref. [5]); (c) β-eucryptite (from Ref. [6]).

strain remains. The first loading-unloading cycle exhibits sub-
stantial hysteresis;

(B) In subsequent cycles, the loading-unloading curves become al-
most linear (no hysteresis is observed in Fig. 2b) – provided the
peak load does not exceed the one in the first cycle;

(C) If the peak load in the next cycle exceeds the one in the previous
cycle, the loading curve becomes nonlinear above this point;

In the context of geological materials, some of these features have
been observed starting from the 1970's. Hawkes and Mellor [7] con-
ducted tensile tests on Berea sandstone, Indiana limestone, and Barre
granite and reported that at low loads the Young's modulus is sim-
ilar in tension and compression, but decreases in tension at higher
loads and increases in compression, up to the stage of incipient fail-
ure. Stimpson and Chen [8] proposed a testing technique in which the
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moduli in both tension and compression can be measured on the same
specimen and reported nonlinear behavior under tensile loading of
several rocks (halite, potash, granite, and limestone). Okubo and Fukui
[4] performed uniaxial tension tests on nine Japanese rocks and ob-
served that the stress-strain curves in tension are non-linear; some of
them are shown in Fig. 2a. Heap et al. [32] observed evolution of the
elastic moduli of basalt with increasing microcrack density under dis-
placement-controlled loading. They also observed that upon further
cycling microcracking only proceeds if the load exceeds the maximum
load of all preceding cycles. Young et al. [9] attributed the non-lin-
earity in tension to stable growth of microcracks, as also mentioned in
Ref. [10].

In the context of ceramics, Kroupa [11] discussed similar non-
linearities in thermally sprayed ceramic coatings under tension and
attributed the decrease of Young's modulus to increase of microc-
rack density; he suggested a semi-empirical relation for the nonlinear-
ity. Sadowski and Samborski [12] considered nonlinear behavior of
porous polycrystalline ceramics in tension and compression, and re-
lated the intergranular character of crack propagation to smaller frac-
ture surface energy of grain boundaries. Gao et al. [5] discussed a pos-
sible micromechanism of nonlinearity that involves frictional sliding
on parts of zigzag cracks induced by tensile loads. More recently, sev-
eral papers have demonstrated increase in the microcrack density un-
der tensile loading [3,6,10,13]. Cooper et al. [10] made an attempt to
model the non-linearity of tensile stress-strain curves; they utilized a
modified differential scheme assuming microcrack extension as the
main damage mechanism; the microcrack evolution parameters were
chosen as linear function of applied strain. They did not provide, how-
ever, any micromechanical explanation of the behavior under cyclic
loading (increased stiffness at unloading and the resulting hystere-
sis). Further, they stated that the crack density remains unchanged
– and hence continues to contribute to the stress-strain relation – as
one switches from loading to unloading. This assumption implies that
stiffnesses at both peak loading and onset of unloading are the same,
E = Epeak(εmax) - contrary even to the experimental results presented
in their paper.

The present work provides micromechanical explanations and
modeling of the features (A) – (C) discussed earlier. The quantitative
model involves an empirical part that describes the increase of crack
density on applied strain, which cannot be derived analytically. The
model is validated by the existing experimental data and then verified
by new data on β-eucryptite ceramics subjected to cyclic tensile load-
ing.

2. Micromechanical explanation and modeling

We suggest a micromechanical explanation of the features (A)-(C)
described above. It is based on two factors: (1) complex crack geome-
tries that follow grain boundaries or weak surfaces, and (2) roughness
of crack faces, with roughness profiles getting “mismatched” as cracks
propagate, thus impeding the reversal of displacements of crack faces
at unloading. The sketch in Fig. 3 illustrates the role of roughness.

The features (A) related to the first loading cycle can be explained
as follows. The softening in forward loading is due to microcracking;
similarly, the feature (C) is related to additional microcracking at load-
ing above the previous peak. The behavior at unloading is related to
roughness of crack surfaces. Indeed, in forward loading, relative dis-
placements of crack faces comprise both the normal (opening) and the
tangential components. If crack propagation occurs, then roughness
profiles of crack faces get “mismatched”, and this prevents full rever-
sal of the mentioned displacements at unloading. This leads to

“stiffer” response at unloading (as compared to the end of loading), to
hysteresis, and to consequent residual strain.

In subsequent cycles, the mismatched (due to crack growth) rough-
ness profiles prevent movement of crack faces; the cracks are “stuck”
in the positions reached at the peak load. This leads to almost linear
stress-strain curves, as described in feature (B).

Remark. The mismatch occurs due to small-scale roughness of crack
faces (clearly seen in the exemplary photomicrographs in Fig. 1).
When a crack propagates, it experiences not only the normal opening
but the shear displacement discontinuity as well, so that the rough pro-
files shift with respect to one another. This causes the mismatch that,
upon unloading, prevents full backsliding on the crack. This phenom-
enon constitutes one of the basic features of the proposed microme-
chanical model.

Quantitative modeling of stress-strain curves requires a model for
the effective elastic properties of a polycrystalline material (treated
as homogenized isotropic material) that contains cracks. We use the
differential scheme that has been shown to be relatively accurate for
cracked solids [14]. This scheme introduces inhomogeneities in incre-
ments of concentration, until the final concentration is reached, with
homogenization of the background matrix after each increment. Since
the increments are infinitesimal, the corresponding increments of the
effective constants are found from the dilute limit results. This leads
to first-order differential equations for the effective constants as func-
tions of concentration. This scheme, first formulated by Bruggeman
[15,16] for the effective dielectric and elastic constants of a matrix
with spherical inhomogeneities, was applied to the elastic properties
of cracked solids in Refs. [17,18]; for the ellipsoidal inhomogeneities,
the equations were given by McLaughlin [19], who solved them ex-
plicitly for spherical inhomogeneities; this solution was further ana-
lyzed in Refs. [20,21].

In the isotropic case of randomly oriented inhomogeneities, we
have two coupled differential equations for the effective bulk and
shear moduli. If, however, we are interested in Young's modulus only,
then one can construct a simple approximate solution that has satisfac-
tory accuracy if Poisson's ratio of the material prior to loading ν0 < 0.4
[22]; in the case of circular cracks, it has the form, see the book of
Kachanov and Sevostianov [23]:

where and subscript
“0” refers to material prior to loading; Δρ denotes the increase of crack
density under loading (with respect to the initially microcracked state).

In displacement-controlled loading, the crack density increases as
ρ = ρ(ε). If this dependence is known, formula (1) gives Young's mod-
ulus as a function of applied strain, E = E(ε). In Ref. [10], a linear
dependence of the microcrack density on strain has been assumed:
ρ = ρ0 + Bε (where, ρ0 is the microcrack density of the material before
loading and B is a fitting parameter). This assumption was not given
any physical background and was made for sake of simplicity.

Modeling of complex crack geometries. The crack density parame-
ter used in formulas above is defined for the circular (penny shaped)
cracks only: where ak is the k-th crack radius and
V is the representative volume. It can still be used for flat (planar)
cracks of “irregular” in-plane geometries, in the sense that an equiva-
lent set of circular cracks producing the same effect exists [24]. How

(1)
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Fig. 3. Sketch illustrating the role of roughness of crack faces. In forward loading, roughness profiles of crack faces get mismatched when nonlinearity starts due to crack propagation
(point 2); at unloading (point 4) the faces get “stuck” (their displacement at peak load C is locked).

ever, intergranular cracks are non-flat, and for them not only the
crack density parameter is not defined but an equivalent set of circu-
lar cracks may exist only for certain geometries [25]. Hence, crack
density parameter becomes a “fuzzy” concept: it characterizes crack
concentration in the way that may not have immediate geometri-
cal interpretation (while we may regard the microcrack density of
penny-shaped cracks as the total volume of the spheres circumscribed
over those cracks divided by the volume of the whole specimen).
We emphasize this point, we call this “fuzzy” parameter “generalized
crack density”, denote it by R (rather than ρ for penny-shaped cracks)
and proceed as follows:

• We observe that, for the dependence E = E(ε) to be constructed, the
parameter R does not actually need to be geometrically defined; it is
its dependence on applied strain that is needed;

• We retain the structure of formula (1), with ρ→R:

Simulation of stress-strain curves for cordierite and β-eucryp-
tite. The problem reduces to formulating the dependence ΔR = ΔR(ε)
where “Δ” refers to the increment of microcrack density (compared to
its pre-existing level). We select this dependence as to fit the experi-
mentally observed stress-strain curves. This is achieved by taking

where a is a fitting parameter; for cordierite and β-eucryptite, the
value a = 85 happens to be the same, and provides the best fit (as dis-
cussed in Section 4, parameter a is generally grain size-dependent).
The values of E0 and ν0 refer to the material prior to loading (they re-
flect the pre-existing level of microcracking); for cordierite and β-eu-
cryptite, , ν0 = 0.20 and , ν0 = 0.28, respec-
tively (see Cooper et al., 2017, as well as Bruno et al., 2012). For both
materials, the procedure of extracting ΔR is illustrated in Fig. 4 (a, b)
for cordierite and Fig. 4 (c, d) for β-eucryptite. We combined equa-
tions (3) and (2) and varying the fitting parameter a to get the best
agreement with the experimental data. Fig. 4(a, c) show the best-fit of
the experimental data. Fig. 4(b, d) show the extracted dependencies
ΔR(ε).

Remark. Note that the exponential in formula (3) is a fitting function.
While the choice of this function is arbitrary, the exponential charac-
ter reflects the material behavior: first, at low applied load, cracks ori-
ented normally to the load direction start to propagate slowly, and then
crack growth becomes faster and involves a strongly non-linearly in-
creasing number of crack orientations.

(2)

ΔR(ε) = eaε2 − 1
(3)
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Fig. 4. Procedure of extracting from experimental data: (a) best fit of the stress-strain curve for cordierite [5]; (b) change in generalized crack density as a function of applied strain
for corderite; (c) best fit of the stress-strain curve for β-eucriptite [6]; (d) change in generalized crack density as a function of applied strain for beta-eucriptite.

Fig. 5 shows simulation of some of the stress-strain curves shown
in Fig. 2. The forward loading curve is simulated by formula
σ = E(ε)(ε − εres) where E(ε) is given by Equation (2) and εres is taken
as zero in the first cycle and from the data of Fig. 2b, c in the sub-
sequent cycle. The unloading curve represents linear elastic response
corresponding to locking of microcracks (due to roughness) at unload-
ing so that σ = E0(ε − εres), i.e. this slope is the same as at the be-
ginning of the forward loading cycle. This feature will be justified
and discussed later. The next section demonstrates that the proposed
model successfully describes the behavior of ceramics under complex
loading histories, as tested by experiments on cyclic loading of micro-
cracked β-eucryptite with large and medium grain sizes.

3. Experiments: cyclic loading with increasing amplitude

The reported experiments were done on beta-eucryptite ceramics
specimens. We briefly describe their preparation and microstructure
referring to several earlier works for details [6,10,13,26]. The prepa-
ration started with a glass precursor consisting of a non-stoichiomet-
ric mixture of Li2O, SiO2, and Al2O3 yielding the chemical formula
of the oxide as LiAlSiO4 (β-eucryptite). The glass was poured into
large pads that were cerammed using titanium oxide (of less than 5%
weight) as nucleating agent. Two materials, with different grain sizes,
LGS and MGS (large and medium grain sizes, with average grain
sizes of 30μm and 5μm respectively) were obtained by the following
annealing treatments: 16hat 1300°C for LGS and 1h at 1300°C for
MGS. Their typical microstructure is shown in Fig. 6. The MGS ma

Fig. 5. The first and the second loading-unloading cycles for (a) cordierite and (b) β-eucryptite, as predicted by the model (2) in comparison with the experimental data from Refs.
[5,6].
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Fig. 6. SEM images of (a) large grain sized (LGS) and (b) medium grain sized (MGS) β-eucryptite.

terial had a moderate level of microcracking, whereas the LGS mater-
ial had a large density of microcracks (both referring to the conditions
prior to loading).

Uniaxial tension experiments were performed on an ORNL
in-house built micro tensile rig assembled on an optical bench. An
optical microscope was mounted on the rig vertically while the load-
ing direction was horizontal. The optical images were captured peri-
odically (1Hz acquisition frequency) and analyzed by standard digi-
tal image correlation (DIC) techniques, to calculate strain during load-
ing. Details of the procedure, as well as possible errors, have been de-
scribed in the above-mentioned works. Rectangular specimens were
machined and mounted to grips using a thermal forming adhesive.
The uniaxial tests were performed at a constant cross-head displace-
ment rate of 1μm/s for both loading and unloading. Multiple load-
ing and unloading cycles to ∼25, 50 and 75% of failure strength were
performed. Fig. 7 shows the stress-strain curves for the LGS (a) and

MGS (b) specimens. Note that shifting the curves in each cycle to the
left by the amount corresponding to the residual strain shows that the
Young's modulus of the material remains the same at the beginning of
each cycle. Our hypothesis that the stiffness upon unloading matches
that at the beginning of forward loading is justified by the experimen-
tal data. Physically, it implies that propagating cracks get stuck upon
unloading, but other existing cracks continue contributing to the over-
all compliance to the same amount as for the initially microcracked
material.

4. Application of the model to complex loading histories

We apply the developed model to the cyclic tensile loading of
beta-eucryptite ceramics (see Section 3) assuming increasing crack
density in forward loading and linear elastic unloading corresponding
to “locked” microcracks. The results for ΔR(ε) are shown in Fig. 8.

Fig. 7. Stress-strain behavior of (a) LGS and (b) MGS β-eucryptite specimens subjected to cyclic displacement-controlled loading. Solid and empty symbols correspond to loading
and unloading, respectively.
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Fig. 8. Changes in generalized crack density during loadings. Vertical lines correspond to locking of crack face displacements during unloading portion of the cycle.

We use the same formula ΔR(ε) = eaε2 − 1 as in Section 2, where the
best fit for the LGS and MGS specimens is given by a = 85 and a = 35
, respectively, indicating grain-size dependence of parameter a.

Remark. The value of a is the same for LGS and cordierite (Section2).
In fact, the grain sizes of cordierite and β-eucryptite LGS are nearly
the same, while that of MGS is smaller. The dependence of a on grain
size is however subject of a separate study.

The values of E0 are taken as and [10] for the LGS
and MGS specimens, respectively – the difference being due to higher
pre-existing microcrack density in the LGS specimens. Poisson's ratio
is taken as ν0 = 0.28.

The variation ΔR(ε) for the LGS and MGS specimens is shown in
Fig. 8. Note that vertical drop to zero for ΔR at unloading reflects lock-
ing of cracks resulting in their zero contribution to the overall com-
pliance. Upon reloading, cracks start to contribute to the overall strain
only when the previous peak is reached.

Fig. 9 shows the stress-strain behavior during each of the
three-and-a-half cycles, for the LGS samples; it compares the simu-
lated curves with the experimental data. Fig. 10 contains similar infor-
mation for the MGS specimens.

5. Discussion and conclusions

We have proposed a certain micro-mechanism that explains the
non-linear behavior of microcracked ceramics under tension (includ-
ing cyclic loading), and modeled this mechanism quantitatively. The
main ideas are that (1) the nonlinearity is related to intergranular (or
along weak surfaces) crack propagation and (2) the hysteresis is due
to roughness of crack faces that gets “mismatched” due to the prop-
agation and thus impedes backward displacements of crack faces at
unloading. The model is shown to be able to reproduce loading and
unloading stress-strain curves reported earlier in literature. It is also
shown to reproduce the data on complex loading history reported in
the present work.

Fig. 9. Comparison of model predictions and experimental data for the three and a half loading-unloading cycles for LGS specimens.
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Fig. 10. Comparison of model predictions and experimental data for the three and a half loading-unloading cycles for MGS specimens.

Note that the suggested micro-mechanism may not be the only
one responsible for the observed stress-strain behavior. In particular,
there is a possibility that, under tensile loading, certain branches of
zig-zag-shaped cracks experience local compressive conditions and
may undergo frictional sliding [5].

Remark. We mention a peculiar detail of the stress-strain curves that
seems to be observed in the data reported in Section 3: the unloading
curve initially follows the loading one, starting to stiffen only after a
certain amount of unloading - provided the peak load is sufficiently
high. Fig. 11 gives a sketch that explains this feature in the framework
of our model: at high peak loads, the opening displacement of cracks
(at least, of many of them) is sufficiently large as to prevent immedi-
ate locking of the roughness profiles at unloading, so that the displace-
ments of crack faces are not initially impeded, and the unloading curve
closely follows the loading branch. At further unloading, cracks get
locked by their asperities, and the material “stiffens”. This rather in-
teresting feature can be observed in the measured stress-strain curves
of Fig. 7a (or 9.c) at the third cycle, when the peak load goes above
75% of the rupture load (see inset in Fig. 11).

We also comment on the challenge of quantifying the crack den-
sity – that is encountered in many materials science applications. We
emphasize that the “generalized crack density” – denoted by R – is in-
troduced by necessity: although quantitative results exist for a num-
ber of non-circular shapes (see the book of Kachanov and Sevostianov
[23]), the commonly used crack density parameter ρ is defined for
the penny-shaped cracks only, whereas the actual crack geometries
are quite “irregular” and do not resemble circles. At the same time,
a certain measure of crack density is needed. In some specific cases,
this difficulty can be solved [25]. However, in the context of our pa-
per, it can be by-passed: it is not the crack density parameter itself
that is needed, but its evolution with loading – and this aspect can

be analyzed bypassing the explicit definition of the crack density pa-
rameter.

In Ref. [30], a direct comparison between the geometrical meaning
of ρ and its determination via stress-strain curves has been attempted
(using SEM images), but has yielded moderate agreement. The intro-
duction of R would on one hand render such comparison impossible,
but on the other hand would better correspond to the complicated mi-
crocrack shape, in spite of the fact that Kachanov and Sevostianov
(2005) proved that moderate roughness would not undermine the geo-
metrical meaning of ρ under forward loading.

The difficulty of a geometrical evaluation of the generalized crack
density parameter R – or its increment under loading, ΔR - can be by-
passed using cross-property connections [28,29]. This parameter can
be determined in terms of the effective conductivity (thermal or elec-
tric) if these data are available. Indeed, the effective conductivity – in
the framework of the differential scheme– is given by
in the case of circular cracks. As shown in Ref. [27], the concentration
parameters for cracks of complex shapes are similar for the elasticity
and conductivity problems, so that, similarly to Equation (2),

Thus, the conductivity data determines the value of R - although its
geometrical meaning may not be obvious. Further, the entire depen-
dence E = E(ε) can be determined in terms of the conductivity depen-
dence k = k(ε), using the explicit cross-property connection [28,29].
For microcracked materials, this connection – in the framework of
the differential scheme applied to both the elastic and the

(4)
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Fig. 11. Sketch that explains why unloading from a sufficiently high peak load initially follows the loading path (starting to stiffen only at later stages of unloading). The inset shows
a part of the experimental data of Fig. 3a.

conductive properties – has the form

We note, in conclusion, that the constructed model can be utilized
to design for a specific non-linear tensile behavior of brittle microc-
racked polycrystalline materials.
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