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a b s t r a c t 

We consider the effective elastic properties of cracked solids, and verify the hypothesis 

that the effect of crack interactions on the overall anisotropy – its type and orientation – is 

negligible (even though the effect on the overall elastic constants may be strong), provided 

crack centers are located randomly. This hypothesis is confirmed by computational studies 

on large number of 2-D crack arrays of high crack density (up to 0.8) that are realizations 

of several orientation distributions. Therefore, the anisotropy can be accurately determined 

analytically in the non-interaction approximation (NIA). Since the effective elastic proper- 

ties possess the orthotropic symmetry in the NIA (for any orientation distribution of cracks, 

including cases when, geometrically , the crack orientation pattern does not have this sym- 

metry), the orthotropy of cracked solids is not affected by interactions. 

© 2017 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction. The hypothesis to be verified 

At low-to-moderate crack densities, the effect of crack interactions on the effective elastic properties is weak (weaker

than one may expect). The reason is that, although the effect of interactions on local quantities such as stress intensity

factors (SIFs) may be strong, the opposite effects of shielding and amplification (in arrays of cracks with random mutual

positions) largely cancel one another, as directly seen from computations of Grechka and Kachanov (2006) . This can also

be explained by applying the internal variables technique of Rice (1975) to cracked solids: the effect of interactions on

contributions of cracks to the effective properties is substantially weaker than their effect on local quantities such as SIFs

(see Kachanov & Sevostianov, 2012 ). 

Therefore, the non-interaction approximation (NIA), as applied to cracked solids, has larger-than-expected range of ap-

plicability – provided that the proper version of the NIA is used: compliances, and not stiffnesses, are linear in crack

density, and the NIA is not confused with its linearized version, the “dilute limit” (see the discussion of Sevostianov &

Kachanov, 2012 ). However, at high crack densities, the effect of interactions on the overall properties (the difference with

the NIA results) becomes substantial – particularly in 2-D geometries (see, for example, computations of Kushch, Sevos-

tianov, & Mishnaevsky, 2009 and experimental data on microcracked ceramics of Bruno & Kachanov, 2016 ). 

The anisotropy of the effective properties caused by non-random orientations of cracks is another factor of importance

(its knowledge may be needed, for example, for proper interpretation of various wavespeed data). The question arises,

whether the two factors – the reduction of stiffness and the anisotropy – can be separated . We examine the hypothesis that

the anisotropy can be accurately determined in the NIA, in spite of strong interactions. We assume that the anisotropy
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is solely due to orientation distribution of cracks (crack centers do not form regular spatial patterns, such as lattice, that

possess symmetries of their own). 

This hypothesis is examined by computational studies of 2-D crack arrays of high crack density that have different ori-

entation distributions. The applicability of the findings to 3-D crack geometries is discussed in the last Section of the work.

2. Background results. Anisotropy of cracked solids in the non-interaction approximation 

In the NIA, the effective elastic properties of an isotropic matrix with certain distribution of cracks always possess the or-

thotropic symmetry – even if, geometrically , the orientation distribution of cracks does not have this symmetry (for example,

in the case of two families of parallel cracks oriented at arbitrary angle to one another), see papers Kachanov (1980) and

Kachanov (1992) . The reason for this, somewhat counterintuitive, fact is that a set of 2-D non-interacting cracks can be fully

characterized – from the viewpoint of the effective elastic properties – by symmetric second-rank crack density tensor (its

2-D version) 

α = ( 1 /A ) 
∑ 

k 

(
a 2 nn 

)( k ) 
in components, αi j = ( 1 /A ) 

∑ 

k 

(
a 2 n i n j 

)( k ) 
, (2.1)

where A is the area of averaging domain (2-D RVE) and 2 a ( k ) is the length of k th crack. Its trace ρ ≡ αii = ( 1 /A ) 
∑ 

a 2 
k 

is a

2-D version of the scalar crack density parameter introduced (in 3-D case) by Bristow (1960) for randomly oriented cracks;

hence α is a tensor generalization of ρ that accounts for crack orientations. 

Indeed, the change in elastic compliances due to cracks in the 2-D case, in the NIA, is expressed in terms of α. The

effective com pliance tensor is represented as S 
i jkl 

= S 0 
i jkl 

+ �S 
i jkl 

, where S 0 
i jkl 

are compliances of the isotropic bulk material

S 0 i jkl = 

1 + ν ′ 
0 

2 E ′ 0 
(
δik δ jl + δil δ jk 

)
− ν ′ 

0 

E ′ 0 
δi j δkl (2.2)

and �S 
i jkl 

are changes due to cracks 

� S i jkl = 

π

E ′ 0 
1 

4 

(
δik α jl + δ jl αik + δ jk αil + δil α jk 

)
. (2.3)

Equivalently, the result (2.3) can be expressed in terms of the change of the elastic potential due to cracks: 

� f = 

(
π/ E ′ 0 

)
( σ · σ) : α = 

(
π/E ′ 0 

)
σi j σ jk αik . (2.3a)

Hereafter, E ′ 
0 

and ν′ 
0 

are 2-D Young’s modulus and Poisson’s ratio: E ′ 
0 

equals 3-D modulus E 0 for plane stress and

E 0 / ( 1 − ν2 
0 
) for plane strain and Poisson’s ratio ν ′ 

0 
= ν0 for plane stress and ν ′ 

0 
= ν0 / ( 1 − ν0 ) for plane strain. In the present

work, the 3-D Poisson’s ratio ν0 = 1 / 4 will be assumed, implying ν ′ 
0 = 1 / 3 in the case of plane strain. 

Since α is symmetric second-rank tensor, the effective elastic properties are always orthotropic, the orthotropy axes being

coaxial with the principal axes of α. We emphasize that the exact orthotropic symmetry holds only in the NIA. Indeed, for

interacting cracks, tensor α becomes, strictly speaking, inadequate as crack density parameter: it contains no information on

mutual positions of cracks that become relevant for interacting cracks. 

Remark . The same comment, that the concentration parameters that do not reflect the mutual positions of inhomo-

geneities, are, strictly speaking, inadequate at finite concentrations, applies to other commonly used parameters, such as

scalar crack density ρ , or volume fraction, for other types of inhomogeneities. Although these parameters may distort the

actual contributions of individual inhomogeneities to the effective properties, there is no simple alternative (short of solving

the interaction problem). Referring to Kachanov and Sevostianov (2005) for further discussion, we focus here on the specific

issue of anisotropy – whether it can be predicted by tensor α. 

We examine the issue of the orthotropic symmetry for interacting cracks. Deviations from the orthotropic symmetry will

be measured by the dimensionless Euclidean norm 

δ = 

∥∥S ortho − S actual 
∥∥/∥∥S actual 

∥∥ = 

√ (
S ortho 

i jkl 
− S actual 

i jkl 

)(
S ortho 

i jkl 
− S actual 

i jkl 

)
/ 

√ 

S actual 
i jkl 

S actual 
i jkl 

, (2.5)

where S ortho is the “best-fit” orthotropic compliance tensor. 

The concept of approximate and best-fit elastic symmetries was introduced by Fedorov (1968) where the best-fit isotropic

approximation of elastic anisotropies was given. It was further developed, in the context of geophysics applications, by

Arts, Rasolofosaon, and Zinsner (1996) . For a systematic treatment of the concept and further results, see Sevostianov and

Kachanov (2008) ; they found, in particular, that the best-fit orthotropic approximation of a given non-orthotropic tensor

S ijkl is given simply by setting the non-orthotropic compliances (such as S 1112 , S 2212 ) in the axes of the best-fit orthotropy

equal to zero. 

Remark. In the 3-D case (circular cracks of radii a k ) – that is not considered here – crack density tensor α =
( 1 /V ) 

∑ 

k ( a 
3 nn ) 

(k ) 
has to be supplemented by fourth-rank tensor β = ( 1 /V ) 

∑ 

k ( a 
3 nnnn ) 

(k ) 
that, however, plays a secondary

role (it enters � S ijkl with multiplier v 0 /2 that is substantially smaller than the overall coefficient of 1 at the α-terms): 

�S ijkl = 

32 

(
1 − ν2 

0 

)
3 ( 2 − ν0 ) E 0 

[ 
1 

4 

(
δik αjl + δjl αik + δjk αil + δil αjk 

)
− ν0 

2 

βijkl 

] 
. (2.6)
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Table 1 

Parameters of crack arrays. 

Number of cracks in one array 300–350 

Number of boundary elements per one crack 20 

Number of boundary elements per one side of the computational domain 40 

Number of arrays for each crack density 450–650 

Fig. 1. Examples of the crack arrays examined. (A) Parallel crack array, (B) two families of parallel cracks, and (C) three families of parallel cracks forming 

angles 15 ° and 30 ° with one another. Crack density in all arrays ρ = 0 . 5 . 
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Hence the orthotropy is approximate, even in the NIA, the deviations being due to the β-term in (2.6) (they are actu-

ally smaller than indicated by multiplier v 0 /2 since the β-term contributes, partly, to the orthotropic part of the effective

compliances). 

3. Numerical simulations 

A large number of crack arrays have been generated. The arrays were realizations of three orientation distributions: 

A) Parallel cracks; 

B) Two families of parallel cracks forming three different angles with one another; 

C) Three families of parallel cracks forming angles 15 ° and 30 ° with one another. 

Note that arrays (B) and (C) do not have the geometric orthotropic symmetry of the orientation distribution, hence the

examination of their elastic orthotropy is particularly important. 

For all generated arrays, crack densities varied in the interval 0.01 ≤ρ ≤ 0.8. For each value of crack density, 450 to 650

crack arrays, each containing 300–350 cracks, were generated, with locations of crack centers determined by random num-

ber generator and subjected to the restriction of the minimal distance between cracks being larger than 0.1 crack length.

This number of cracks in each array was not sufficient for the results to converge to true values of the effective compli-

ances (as reflected in fluctuations of the results from one crack array to another). However, this factor was compensated

by averaging the results over a large number of tested arrays (450–650) – the procedure that was shown to be legitimate

in works of Huet and co-authors (see Hazanov & Huet, 1995; Hazanov and Amieur, 1995; Huet, 1990 ). Note that averaging

over realizations is also widely used in molecular dynamics simulations (see e.g. paper by Kuzkin, Krivtsov, Podolskaya, &

Kachanov, 2016 ). 

In order to reduce the number of parameters involved, all cracks in the generated crack arrays had the same length. Crack

centers were randomly distributed in a square computational domain, subjected to the restriction that spacing between

cracks and distances between cracks and sides of computational domain were not overly small (so that the method of

computation remains reliable). The minimal distance between cracks (distances between any pair of points of a given pair

of cracks) or between a crack and a side of the computational domain was 0.1 of the crack length. Cracks were introduced

in increments; in each increment, coordinates and orientation of a new crack were generated using a random number

generator. If the newly introduced crack was overly close to the previously introduced ones or to a side of the computational

domain, it was discarded and the attempt was repeated. Cracks were added until the desired crack density was reached. 

To operate with dimensionless quantities , we normalize effective compliances by the shear modulus of matrix and the

size of the computational domain – by crack length. Details of the numerical experiments are given in Table 1 . 

Fig. 1 shows examples of the crack arrays examined, for each of the three orientation distributions, (A)–(C). 
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Fig. 2. Effective stiffnesses of a material with parallel cracks: comparison of our computations (black squares and triangles) with the ones of 

Kushch et al. (2009) (white squares and triangles). 

 

 

 

 

 

 

 

 

 

 

 

 

 

The extra strain due to cracks �ɛ ij can be expressed in terms of the average displacement discontinuities on cracks,

b (k ) = 〈 u 

+ − u 

−〉 (k ) , as follows: 

�ε i j = 

1 

2 A 

∑ 

k 

(
b i n j + b j n i 

)( k ) 
, (3.1)

where n 

( k ) is a unit normal to k th crack, A is the area of the computational domain. To compute vectors b ( k ) for interacting

cracks, we used the displacement discontinuity method (see Crouch & Starfield, 1984 ) that is a special case of the boundary

element method (see, for example, Linkov, 2002 and the Appendix A ). 

To determine nine components of the (generally non-orthotropic) 2-D effective compliance tensor S 
i jkl 

, we applied three

test loadings: 

• Uniaxial load in the “horizontal” direction ( σ0 = σ 0 e 1 e 1 ) so that three compliances can be determined: ( 

S 1111 

S 2211 

S 1211 

) 

= 

1 

σ 0 

( 

ε 11 

ε 22 

ε 12 

) 

(3.2)

• Uniaxial load in the “vertical” direction ( σ0 = σ 0 e 2 e 2 ) so that ( 

S 1122 

S 2222 

S 1222 

) 

= 

1 

σ 0 

( 

ε 11 

ε 22 

ε 12 

) 

(3.3)

• Shear load ( σ0 = σ 0 ( e 1 e 2 + e 2 e 1 ) ) so that ( 

S 1112 

S 2212 

S 1212 

) 

= 

1 

σ 0 

( 

ε 11 

ε 22 

ε 12 

) 

(3.4)

Corresponding tractions were applied at boundaries of the computational domain. 

For each crack array, the effective elastic constants were computed as follows. Cracks and boundaries of the computa-

tional domain were divided into boundary elements. The system of linear algebraic equations for displacement discontinu-

ities in all boundary elements was solved under test loading conditions mentioned above. The extra strains due to cracks

were calculated according to formula ( 3.1 ) and the effective compliances – according to formulas ( 3.2 )–( 3.4 ). 

The accuracy of the employed numerical method was examined by comparing the averaged components of the stiffness

tensor for a material with parallel cracks with the results obtained by Kushch et al. (2009) by an entirely different method.

The comparison shows good agreement, as seen from Fig. 2 . 

4. Results 

Computations for the three orientation distributions of cracks, (A)–(C), produced the following results. 
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Fig. 3. Parallel cracks. Deviations from orthotropy measured by norm ( 2.5 ) at different crack densities. Vertical bars indicate the range of the deviations 

and diamonds – deviations of the averages (over the arrays). 

Fig. 4. Two families of cracks inclined at angle φ to one another. Deviations from orthotropy measured by norm ( 2.5 ). Vertical bars indicate results for 

specific arrays and diamonds – averages over the arrays. 

 

 

 

 

 

 

 

 

 

(A) Parallel cracks 

The deviations from orthotropy at different crack densities, as measured by the norm ( 2.5 ), are shown in Fig. 3 . Note that

the scatter – that is due to a finite number of cracks in an array – increases with increasing crack density. The deviation

of the average, over arrays, compliance tensor from the orthotropic one (marked by diamonds) is negligible. For each of the

arrays, the deviations are smaller than 4.5%. 

(B) Two families of parallel cracks (inclined at angle φ to one another) 

Partial crack densities of the two families differed by the factor of two: ρ1 = 2 ρ2 , ρ1 + ρ2 ≡ ρ ; the overall crack density

varied from 0.01 to 0.8. The orientation of the principal axes of crack density tensor α is given by 

tan (2 γ∗) = 

ρ2 sin (2 φ) 

ρ1 + ρ2 cos (2 φ) 
, (4.1) 

where γ ∗ is the angle between the horizontal line and one of the principal axes, counted counterclockwise. We have exam-

ined the cases φ = 15 ◦, φ = 30 ◦, and φ = 40 ◦so that γ ∗ ≈ 4.95 °, γ ∗ ≈ 9.55 °, and γ ∗ ≈ 12.19 ° respectively. 

Deviations from orthotropy at different crack densities, as measured by the norm ( 2.5 ), are shown in Fig. 4 . The deviation

of the average, over arrays, compliance tensor from the orthotropic one (marked by diamonds) is within 3%. For each of the

arrays, the deviations are smaller than 6%. 

As far as the orientation of the principal axes of the “best fit” orthotropy (the concept mentioned in Section 2 ) of the

computed compliances is concerned, Fig. 5 shows that this orientation is very accurately predicted by the NIA, i.e. by the

principal axes of tensor α. 
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Fig. 5. Two families of cracks inclined at angle φ to one another. Orientation of the best-fit orthotropy for the computed compliances (crosses show 

averages over crack arrays and triangles – the maximal and the minimal values) vs. predictions of the NIA, formula ( 4.1 ) (solid line). The angle, in degrees, 

between the horizontal axis and one of the principal axes of orthotropy is shown. 

Fig. 6. Three families of parallel cracks forming angles 15 ° and 30 ° with one another. Deviations from orthotropy measured by norm ( 2.5 ). Vertical bars 

indicate results for specific arrays and diamonds – averages over the arrays. 

 

 

 

 

 

 

 

 

 

 

 

 

 

(C) Three families of parallel cracks 

The families form angles 15 ° and 30 ° with one another ( Fig. 1 c), with equal partial crack densities ρ1 = ρ2 = ρ3 ( = ρ/ 3 )

where ρ is the overall crack density. 

Deviations from orthotropy at different crack densities, as measured by the norm ( 2.5 ), are shown in Fig. 6 . The deviation

of the average, over arrays, compliance tensor from the orthotropic one (marked by diamonds) is within 1%. For each of the

arrays, the deviations are smaller than 3%. 

5. Discussion and conclusions 

We verified the hypothesis that the anisotropy due to non-random crack orientations is accurately predicted in the non-

interaction approximation (NIA), i.e. the orthotropic symmetry (with principal axes of orthotropy coaxial with the principal

axes of the crack density tensor) holds – up to high values of crack densities (at which the values of the effective con-

stants are significantly affected by interactions). Numerical simulations were done on 2-D crack arrays of three orientation

distributions and different crack densities. Importantly, two of the orientation distributions did not possess the orthotropic

(rectangular) geometric symmetry. Large numbers of arrays (450–650) generated for each orientation distribution of cracks

were aimed at compensating for the relatively low number of cracks in each array (300–350). 

Two further comments should be made: 

1. Implications for approximate models of the effective elastic properties . The fact that the effective anisotropy can be taken

from the NIA and thus is known a priori, can be useful in formulating approximate schemes for the effective elastic

properties, in cases when they are anisotropic. In the self-consistent scheme, for example, cracks are placed into the

matrix possessing the effective properties; since the latter is orthotropic, one has only to know compliances of cracks
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of various orientations with respect to the orthotropy axes, in order to implement the scheme (in 2-D case, results are

available in closed form, see Mauge & Kachanov, 1994 ). 

2. On applicability of the conclusions to 3-D cases . The reported calculations were done on 2-D crack arrays, and the question

arises on applicability of the main result (crack interactions do not affect the anisotropy) to 3-D arrays. To this end, we

note that the interaction effects are generally weaker in 3-D, as compared to similar 2-D crack arrangements, at similar

spacing between cracks ( Kachanov, 1994 ). It can be expected, therefore, that the effect of interactions on the anisotropy

is weaker than in 2-D cases – where this effect is absent. The orthotropy in the NIA is approximate in 3-D (see formula

( 2.6 )), and the weakness of the interaction effects im plies that one can expect that the accuracy of this approximate

symmetry is not worsened by interactions. Further 3-D computational studies are needed to confirm this expectation. 

Numerical simulations have been carried out using facilities of the Supercomputer Center “Polytechnic” at Peter the Great

Saint Petersburg Polytechnic University. 
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Appendix A. The displacement discontinuity method 

This method, that represents a special case of the boundary element method (see e.g. Linkov (2002) ), was introduced

by Crouch and Starfield (1984) . Boundaries of the domain of interest and cracks are divided into straight elements, each

having the normal and the shear displacement discontinuities, D y and D x . The displacement discontinuity is constant along

the element (zero order approximation). Higher order approximations and curvilinear elements are considered, for example,

in paper by Rejwer, Rybarska-Rusinek, and Linkov (2014) . 

Each element can be subjected to the shear and normal loads T x , T y . The displacement discontinuities and loads form

columns: 

D = 

⎛ 

⎜ ⎜ ⎝ 

D 

1 
x 

D 

1 
y 

. . . 

D 

N 
x 

D 

N 
y 

⎞ 

⎟ ⎟ ⎠ 

, T = 

⎛ 

⎜ ⎜ ⎝ 

T 1 x 

T 1 y 

. . . 

T N x 

T N y 

⎞ 

⎟ ⎟ ⎠ 

(A.1) 

that are interrelated by linear equations 

T i x = 

N ∑ 

j=1 

A 

i j 
xx D 

j 
x + 

N ∑ 

j=1 

A 

i j 
xy D 

j 
y i = 1 , ..N 

T i y = 

N ∑ 

j=1 

A 

i j 
yx D 

j 
x + 

N ∑ 

j=1 

A 

i j 
yy D 

j 
y i = 1 , ..N 

(A.2) 

Here 

A 

i j 
xx = −2 G ( − sin ( 2 θ ) f xy + cos ( 2 θ ) f xx + y ( sin ( 2 θ ) f xyy − cos ( 2 θ ) f yyy ) ) 

A 

i j 
xy = −2 Gy ( cos ( 2 θ ) f xyy + sin ( 2 θ ) f yyy ) 

A 

i j 
yx = 2 G 

(
2 sin 

2 θ + sin ( 2 θ ) f xx − y ( cos ( 2 θ ) f xyy + sin ( 2 θ ) f yyy ) 
)

A 

i j 
yy = −2 G ( f xx − y ( sin ( 2 θ ) f xyy − cos ( 2 θ ) f yyy ) ) , 

f = − 1 

4 π( 1 − ν) 

(
y 

(
arctg 

y 

x − a 
− arctg 

y 

x + a 

)
− ( x − a ) ln 

√ 

( x − a ) 
2 + y 2 + ( x + a ) ln 

√ 

( x + a ) 
2 + y 2 

)
, 

where 2a is length of the boundary element; θ is the angle between elements i и j; G is the shear modulus; ν is Poisson’s

ratio; x, y are local coordinates of the j th element in the coordinate system of the i th element; f xy stands for partial derivative

of f with respect to x and y . 

Thus, displacement discontinuities on cracks D , under given loads T , are found from the system of linear equations ( A.2 ).

In calculations considered above, loads are applied at elements representing boundaries of the computational domain; trac-

tions at elements representing cracks are equal to zero. 
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