
International Journal of Solids and Structures 156–157 (2019) 243–250 

Contents lists available at ScienceDirect 

International Journal of Solids and Structures 

journal homepage: www.elsevier.com/locate/ijsolstr 

On the effective properties of polycrystals with intergranular cracks 

Igor Sevostianov 

a , ∗, Mark Kachanov 

b , c 

a Department of Mechanical and Aerospace Engineering, New Mexico State University, Las Cruces, NM, USA 
b Department of Mechanical Engineering, Tufts University, Medford, MA 02155, USA 
c R. E. Alexeev Nizhny Novgorod Technical University, Nizhny Novgorod, Russia 

a r t i c l e i n f o 

Article history: 

Received 25 April 2018 

Revised 1 August 2018 

Available online 28 August 2018 

Keywords: 

Polycrystal 

Intergranular cracks 

Effective properties 

Differential scheme 

a b s t r a c t 

The effective properties, elastic and conductive, of a polycrystalline material with intergranular cracks are 

considered. The specifics of intergranular cracking are that crack locations are restricted to intergranular 

boundaries. This necessitates re-examination of the usual homogenization schemes (where crack locations 

are unrestricted). The model developed here addresses this issue. 
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. Introduction 

In conventional models of effective properties of materials with

nhomogeneities, the locations of inhomogeneities are usually un-

estricted (with the exception of some models that prohibit inho-

ogeneities from entering certain regions surrounding their neigh-

ors, see review in the book of Torquato (2002) . In applications,

owever, both intergranular and intragranular cracks may appear

n dependence on the strength of the interfaces between the grains

 Paggi et al., 2018 ). In the present work, we analyze the case of

he weak interfaces, when most of the cracks nucleate and propa-

ate along the grain boundaries and, therefore, the inhomogeneity

ites are restricted to specific locations. For example, microcracks

n polycrystalline ceramics and metals caused by cooling from the

olten state usually nucleate and propagate along intergranular

oundaries ( Fig. 1 a, b); geomaterials provide yet another example

f materials with weak intergranular boundaries and intergranular

icrocracking ( Fig. 1 c, d). 

In such cases, the conventional effective media schemes may

ail. Indeed, in cases of extensive microcracking (produced, for ex-

mple, by cooling of ceramics having relatively large grains) the

ffective stiffness may be reduced by microcracks by the factor of

–10 (see, for example, Bruno and Kachanov, 2013 ). An attempt to

dentify the microcrack density ρ causing such a dramatic drop,

y using one of the conventional schemes, runs into difficulties:

he drop of Young’s modulus E/ E 0 = 0 . 1 − 0 . 12 corresponds to very

igh values of microcrack density, of about 1.3 in the Differential

cheme ( Zimmerman, 1991 ) or 4.6 in the Mori-Tanaka-Benveniste
∗ Corresponding author. 
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cheme ( Mori and Tanaka, 1973; Benveniste, 1986 ). However, such

alues cannot be realized: if microcracking is restricted to grain

oundaries, the crack density cannot exceed its cut-off value ρ∗
t the point of losing coherence. An obvious upper bound for ρ∗
orresponds to all grain boundaries being fully cracked; for grains

f the cubic shape, for example, this implies ρ∗ = 0.54 (since a

quare-shaped crack has approximately the same compliance as

he circular crack of the same area, see ( Fabrikant, 1989 ) and each

rack is “shared” by two adjacent crystals). Smaller values of ρ∗
ay, possibly, be also relevant. 

The intergranular microcracking in polycrystalline materials has

een discussed in literature rather extensively. Most attention

as been paid to the nucleation and propagation of intergranular

racks, particularly in the context of metals and in connection with

islocation activity (see, for example, Wu and He, 1999 ). The effec-

ive properties have received less attention; they have been mod-

led, mostly, by using one of the usual effective media schemes,

isregarding the fact that crack locations are constrained to inter-

ranular boundaries; see, for example, the review of Bruno and

achanov (2016) . Paggi and Wriggers (2012) discussed the effect

f imperfect interfaces on the stiffness and strength of hierarchi-

al polycrystalline materials. They obtained generalized expressions

or the Voigt and Reuss estimates of the bounds to the effective

lastic modulus of heterogeneous materials that account for finite

hickness interfaces between the constituents undergoing damage

p to final debonding. They showed that the interface nonlinear-

ty significantly contributes to the deformability of the material in

ensile tests. Increasing the number of hierarchical levels, the de-

ormability increases. They also established a condition for scale

eparation, which corresponds to the independence of the material

ensile strength from the properties of the interfaces in the second
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Fig. 1. Intergranular cracks in various materials: (a) aluminum titanate ( Bruno and Kachanov, 2016 ); (b) Ti-10Mo-8V-1Fe-3.5Al alloy ( Zhang et al., 2016 ); (c) quartz ( van 

Noort et al., 2008 ); (d) silesian granite ( Kožušníková et al., 2017 ). 
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level of microstructure. Benabou and Sun (2015) proposed an ap-

proximate analytical model for macroscopic behavior of polycrys-

tals accounting for single crystal plasticity and interface debonding

at the grain boundaries (through an exponential cohesive law). 

An attempt to introduce this constraint, in the context of ce-

ramics, was made by Fertig and Nickerson (2015) . They used the

following formula that expresses the effective Young’s modulus in

terms of a “damage parameter” n = N C / N S where N C and N S seem

to denote the number of cracked boundaries and the saturation

level of this number, respectively (their definitions, given both in

terms of crack density and the number of grains, are not fully

clear): 

E/ E 0 = ( 1 + ξ n ) 
−1 

(1.1)

where E 0 refers to uncracked material (presumably representing

the effective modulus of a polycrystalline material) and ξ is a

constant. The structure of formula ( 1.1 ) is the one of the non-

interaction approximation (NIA), but, being expressed in terms of

n – rather than crack density – it leads to serious inconsistencies;

we mention some of them. Firstly, formulas of this kind should be

expressed in terms of crack density and not n (in the 2-D case

– that corresponds to the modeling considered in their paper -

it is (1/ A ) �a ( k )2 where 2 a ( k ) are lengths of rectilinear cracks and

A is the reference area; in the 3-D case of circular cracks, it is

(1/ V ) �a ( k )3 where a ( k ) are radii of circular cracks and V is the refer-

ence volume). We emphasize that crack density parameter in for-
ulas of the type of ( 1.1 ) is defined without regard to its saturation

evel (an attempt to introduce correction for the saturation level

y adjusting the value of factor ξ would lead to incorrect results

n the limit of low crack density where exact results are available).

econdly, being defined in terms of n , the ratio E / E 0 is predicted

o be non-zero (in fact, quite substantial) at the saturation point

 = 1. We add that the discussed model is not fully clear regard-

ng the 2-D vs 3-D modeling. For example, crack coalescence in

-D case – that is of main interest – may proceed quite differently

rom a simple 2-D sketch given by the authors; also, whereas the

uthors use the 3-D version of formula ( 1.1 ), their FEM modeling

s two-dimensional. 

We develop an alternative model that utilizes the basic idea of

he differential scheme (that has been shown to be relatively accu-

ate for cracked solids, Saenger et al., 2006 ) but is modified to ac-

ount for a limited supply of intergranular area available for crack-

ng. It has correct asymptotics at both low crack densities and near

he saturation limit. We focus on the case of overall isotropy that

orresponds to microcracking caused by cooling the polycrystalline

aterial from the molten state (rather than by mechanical load-

ng). 

. Background results on the differential scheme 

The differential scheme introduces inhomogeneities in incre-

ents of concentration, until the final concentration is reached,
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Fig. 2. Effective conductivity of a material with randomly oriented microcracks, as 

predicted by the non-interaction approximation and by the differential scheme. 
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ith homogenization of the background matrix after each incre-

ent. Since the increments are infinitesimal the corresponding in-

rements of the effective constants are found from the dilute limit

esults. This leads to first-order differential equations for the effec-

ive constants as functions of concentration, with the initial con-

ition that, at zero concentration, the constants are the ones of

he bulk material. This scheme was first formulated by Bruggeman

1935, 1937 ) for the effective dielectric and elastic constants of

n isotropic matrix with spherical inhomogeneities. It was ap-

lied to the elastic properties of cracked solids by Vavakin and

alganik (1975) and Hashin (1988) ; for the ellipsoidal inhomo-

eneities, the equations were given by McLaughlin (1977) who

olved them explicitly for spherical inhomogeneities; this solution

as further analyzed by Zimmerman (1991) . 

.1. Conductive properties 

We consider the isotropic case of a matrix of isotropic con-

uctivity k 0 containing randomly oriented inhomogeneities of gen-

rally diverse shapes having the isotropic conductivity k 1 . In this

ase, the differential equation for the overall conductivity k eff has

he form ( Sevostianov and Kachanov, 2013 ): 

d k e f f 

dφ
= 

∑ 

i 

φi K 

( i ) 
mm 

(
k 1 , k e f f 

)
≡ � k e f f (2.1) 

here ϕ is the total volume fraction of the inhomogeneities, ϕi is

he volume fraction of the i -th inhomogeneity; and K 

(i ) 
qr ( k 1 , k e f f )

s the conductivity contribution tensor of the i -th inhomogeneity

 Sevostianov and Kachanov, 2002 ; see Appendix 1 ), so that � de-

ends on inhomogeneity shapes and on the ratio k 1 / k eff. In the

imiting cases of perfectly insulating or superconducting inhomo-

eneities, the dependence of � on the ratio k 1 / k effvanishes and �

an be treated as parameter that depends on the geometry only. In

hese limiting cases, Eq. (2.1) has the exponential solution: 

 e f f = k 0 e 
φ� (2.2) 

If all inhomogeneities have the same shape (more precisely, it

s sufficient that the trace K 

(i ) 
mm 

is the same for all i ), 

= K mm 

/ k e f f (2.3) 

McLaughlin (1977) suggested to modify the differential scheme

y disregarding the part of the newly introduced inhomogeneities

hat overlaps with the volume occupied by the ones introduced

arlier. Then, instead of the exponential solution, one obtains a

ower-law one (see the review of Markov, 20 0 0 ): 

 e f f = k 0 ( 1 − φ) 
�

(2.4) 

It has the advantage of having the proper limit at φ → 1. The

xponent �( γ ) has the meaning of shape factor that can be deter-

ined from consistence with the non-interaction approximation in

he limit of small ϕ. 

Note that, starting with the work of Archie (1942) , the power

aw of the ( 2.4 ) type (as well as similar law for the effective elas-

ic stiffness) has been used in materials science literature, often on

mpirical grounds – in which case the micromechanical meaning

f � remains unclear and it is treated as a fitting constant. In fact,

is a shape parameter (as is clear from the low concentration

imit) and its best-fit value that provides information on inhomo-

eneity shapes. 

In the case of randomly oriented perfect insulators of the

pheroidal shape of aspect ratio γ , we have: 

 = k 0 ( 1 − φ) 
�( γ ) (2.5) 

here the shape factor �( γ ) is given by ( A2.2 ). In particular, in

he limit of randomly oriented, very thin platelets ( γ → 0) that are
erfectly insulating (that, in particular, covers cracks provided the

onductivity across them is neglected), f 0 (γ ) → −πγ / 4 , η(γ ) →
2 / ( 3 πγ ) and the volume fraction can be expressed in terms of

he crack density parameter ρ ( Bristow, 1960 ) as ϕ = ( 4 / 3 ) πγρ
rovided all platelets have identical aspect ratios γ . In this limit,

he overlap prohibition d φ → (1 −φ) d φ disappears (since it is for-

ulated in terms of volume fraction) and one obtains the expo-

ential solution: 

 = k 0 e 
−8 ρ/ 9 (2.6) 

emark 1. Formally, the transition from ( 2.5 ) to ( 2.6 ) can be ob-

ained by solving the indeterminacy 1 ∞ in Eq. (2.5) : 

( 1 − ϕ ) 
�( γ ) → 1 − 8 

9 

ρ + 

1 

2 ! 

(
8 

9 

ρ
)2 

− 1 

3 ! 

(
8 

9 

ρ
)3 

+ ... = e −8 ρ/ 9 

(2.7) 

emark 2. Although the assumption on identical aspect ratios was

sed to derive ( 2.6 ) from ( 2.5 ) via limiting transition, formula ( 2.6 )

emains valid in the case of diverse aspect ratios as long as they

re small ( γ is smaller than 0.08–0.10). Indeed the crack density

arameter ρ entering ( 2.6 ) contains no reference to γ . Fig. 2 shows

ependence of the effective conductivity on crack density calcu-

ated by the differential scheme and the non-interaction approxi-

ation. 

.2. Elastic properties 

In the isotropic case of random orientations, assuming that all

nhomogeneities have the same isotropic compliance tensor S 1 , we

ave two coupled differential equations for the effective bulk and

hear moduli ( Zimmerman, 1991 ): 
 

 

 

 

 

1 

K 

dK 

dϕ 

= −B ( γ , ν) 

1 

G 

dG 

dϕ 

= −C ( γ , ν) 

(2.8) 

here B ( γ , ν) and C ( γ , ν) are obtained from the expression ( A2.4 )

n the Appendix by replacing ν0 for components of the compliance

ontribution tensor by the effective Poisson’s ratio ν . As shown by

immerman (1991) , these two equations yield the following decou-

led equation for the effective Poisson’s ratio: 

dν

dϕ 

= 

( 1 − 2 ν) ( 1 + ν) 

3 

[ −C ( γ , ν) + B ( γ , ν) ] (2.9) 

emark. A major simplification concerning the system ( 2.8 ) is pos-

ible if the inhomogeneities are pores: in formula for the effective

oung’s modulus (but not for other moduli!), replacement ν → ν0 

roduces errors smaller than 1% ( Sevostianov et al., 2006 ). In this

pproximation, 

 ≈ E 0 ( 1 − φ) 
D ( γ , ν0 ) (2.10) 

here D ( γ , ν) is given by ( A2.4 ). 
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Had solution of the Eq. (2.9) been known, its substitution into

the system ( 2.8 ) would have decoupled it. However, Eq. (2.9) can-

not generally be solved in closed form. 

In the case of randomly oriented cracks, we have: 

1 

K 

dK 

dρ
= −B (ν, 0) = −16 

9 

(
1 − ν2 

)
1 − 2 ν

1 

G 

dG 

dρ
= −C(ν, 0) = −32 

45 

( 1 − ν) ( 5 − ν) 

2 − ν
(2.11)

where ρ is crack density. These equations were integrated by

Zimmerman (1985) producing an implicit expression of the effec-

tive Poisson’s ratio ν in terms of ρ: 

ρ = 

5 

8 

ln 

ν0 

ν
+ 

15 

64 

ln 

1 − ν

1 − ν0 

+ 

45 

128 

ln 

1 + ν

1 + ν0 

+ 

5 

128 

ln 

3 − ν

3 − ν0 

(2.12)

and the following expressions of the effective bulk and shear mod-

uli in terms of ν: 

G 

G 0 

= 

(
1 + ν0 

1 + ν

)(
ν

ν0 

)10 / 9 (3 − ν0 

3 − ν

)1 / 9 

K 

K 0 

= 

(
1 − 2 ν0 

1 − 2 ν

)(
ν

ν0 

)10 / 9 (3 − ν0 

3 − ν

)1 / 9 

(2.13)

A significant simplification is possible for calculation of the ef-

fective Young’s modulus. 

1 

E 

dE 

dρ
= −D ( 0 , ν0 ) = − 16 

45 

(
1 − ν2 

)
( 10 − 3 ν) 

2 − ν
(2.14)

Note that the dependence of the right hand part of ( 2.14 ) on

Poisson’s ratio is relatively weak provided ν0 < 0.4 so that the

right hand part does not change much in this interval and, with

accuracy that is satisfactory for rough estimates (that are sufficient

for “irregular”, and somewhat uncertain, 3-D microgeometries), 

E ≈ E 0 e 
−D 0 ρ (2.15)

where D 0 = D ( 0 , ν0 ) = − 16 
45 

( 1 −ν2 
0 
)( 10 −3 ν0 ) 

2 −ν . 

0 
emark. The above statement on weak dependence on Poisson’s

atio does not apply to other elastic constants. Fig. 3 shows depen-

encies of the elastic constants on crack density calculated three

ifferent ways: (1) the non-interaction approximation, (2) numeri-

al solution of the system ( 2.11 ), and (3) by the simplified solution

 2.15 ). It also illustrates the above observation concerning depen-

encies of E, K and G on the effective Poisson’s ratio. 

An important observation is that the ratio of the effective Pois-

on’s ratio to the effective Young’s modulus, as calculated numer-

cally from the system ( 2.11 ), is almost linear, with the propor-

ionality coefficient almost independent of ν0 ( Fig. 4 ). This means

hat a simplified solution ( 2.14 ) for the Young’s modulus implies

n equally simple approximate solution for the effective Poisson’s

atio: 

ν

ν
≈ E 

E 
( 1 + kρ) = e −D 0 ρ( 1 + kρ) (2.16)
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here the proportionality coefficient k is only weakly dependent

n ν0 ; approximately k = 0.22. 

Thus, we have constructed an approximate solution for both

lastic constants that has satisfactory accuracy in the range ν0 <

.4. 

. Modeling the effect of intergranular cracking on the overall 

roperties 

We now modify the system ( 2.11 ) for intergranular microcrack-

ng. The latter is characterized by two specific features: 

(A) Certain saturation value ρ∗ of crack density exists; it can be

associated with fully cracked intergranular boundaries (that,

in case of grains of the cubic shape, is about 0.54); it may

also be somewhat lower; 

(B) A rather specific arrangement of cracks: prior to crack co-

alescence, there are substantial spacings between them so

that crack interactions are relatively weak; they become

strong only when the remaining ligaments become small. 

Modeling of factor (B) is difficult, particularly in 3-D case, and

s not undertaken in the present work. We modify the differential

cheme with the account of factor (A) following the basic idea of

cLaughlin (1977) that we reformulate for cracks: that only lim-

ted area is available for new cracks, so that, of the newly intro-

uced increment d ρ , only dρ( 1 − ρ/ ρ∗) falls onto the intergranu-

ar surface that is still available. Hence we replace dρ → 

dρ
( 1 −ρ/ ρ∗) 

n the system ( 2.11 ). Introducing the normalized crack density

¯ = ρ/ ρ∗ we have 

1 

K 

dK 

d ̄ρ
= −19 

6 

(
1 − ν2 

)
1 − 2 ν

1 

ρ∗( 1 − ρ̄) 

1 

G 

dG 

d ̄ρ
= −32 

45 

( 1 − ν) ( 5 − ν) 

2 − ν

1 

ρ∗( 1 − ρ̄) 
(3.1) 

Closed form solution of this system is difficult to obtain. How-

ver, as far as the Young’s modulus is concerned, the modification

 ρ → d ρ( 1 − ρ/ ρ∗) leads to the following simple solution 

 = E 0 ( 1 − ρ̄) 
D 0 ρ∗ (3.2) 

aving satisfactory accuracy in the range ν0 < 0.4. 

emark. One can also arrive at ( 3.2 ) in a different way, as the mi-

rocrack density increases and the saturation value ρ∗ that remains

vailable for the introduction of new cracks gets smaller, the effect

f newly introduced increment of crack density d ρ obviously in-

reases, and becomes infinite as ρ̄ → 1 . The simplest way to ac-

ount for this factor is to assume that this increase can be de-

cribed by the factor ( 1 − ρ̄) −1 so that Eq. (2.14) is modified as

ollows: 

1 

E 

dE 

dρ
= − D 0 

1 − ρ̄
(3.3) 

ielding the solution ( 3.2 ) that agrees with the non-interaction

symptotics at small ρ and has correct limit at ρ̄ → 1 . 

The obtained result also implies a simple solution for the effec-

ive Poisson’s ratio that follows from Eq. (2.16) by introducing ( 3.2 )

nto this equation: 

ν

ν0 

= ( 1 − ρ̄) 
D 0 ρ∗ ( 1 + k ρ∗ρ̄) (3.4) 

n the conductivity problem, similar considerations yield 

 = k 0 ( 1 − ρ̄) ( 
8 / 9 ) ρ∗ (3.5) 

Fig. 5 illustrates the approximate results ( 3.2 ), ( 3.4 ) and ( 3.6 )

nd compares them with the ones imply by the conventional dif-

erential scheme Eqs. (2.12) , ( 2.14 ), and ( 2.6 ). 
Comparison of the results for the elastic and conductive effec-

ive properties yields the following cross-property connection : 

E 

E 0 
= 

(
k 

k 0 

)9 D 0 / 8 

(3.6) 

This connection does not depend on ρ∗ and coincides with the

ne obtained from the conventional differential scheme applied,

eparately, to the effective elastic and conductive properties of a

olid with randomly oriented cracks (with the simplification ( 2.15 )

aken into account). Thus, the existence of saturation value ρ∗ , and

ts exact value, do not affect the connection. 

. Discussion and conclusions 

In intergranular microcracking, crack locations are limited to

he intergranular area, i.e. there exists certain “saturation” crack

ensity ρ∗ . It can be associated with the state where all intergran-

lar surfaces are fully cracked, implying ρ∗ ≈ 0.54 (it may also be

omewhat smaller); at ρ → ρ∗ the effective stiffnesses, and the ef-

ective conductivity, must tend to zero. This necessitates revision

f the conventional effective media theories where crack locations

an be arbitrary. 

Such revision is applied to the differential scheme, DS, in the

ase of overall isotropy (as has been shown in computational sim-

lations, the DS yields relatively accurate predictions for cracked

olids). We first re-examine the usual formulation of the DS and

onstruct simple closed-form expressions for the effective elastic

oduli. Then we revise the DS with the account of the “saturation”

rack density so that the effective moduli tend to zero as ρ → ρ∗ ;

imilar revision is done in the context of effective conductivity. 

This revision, aimed at the case of intergranular cracking, can

e viewed as material-specific homogenization method. As such, it

an be applied to other cases where positions of inhomogeneities

cracks, pores, inclusions) are limited to certain specific locations

for example, delamination cracks at boundaries of foreign parti-

les). 

The curves of Fig. 5 predicted by the developed scheme

qs. (3.2) , ( 3.4 ) and ( 3.6 ) have upward convexity; in particular

he rate of change xxx become infinite on approach to the sat-

ration point - in contrast with predictions of the differential

cheme. This reflects the nature of the softening effect of inter-

ctions between intergranular cracks as the remaining ligaments

et smaller: the interaction effects remain weak up to quite small

igaments, at which point they rapidly become strong. Note that

he predicted rapid drop of stiffness upon approach to the critical

oint seems to be in agreement with experimental observations of

oncieux et al. (2008) and Fertig and Nickerson (2015) although

he stiffness data were plotted there against temperature rather

han crack density. 

Note that, in the 2-D case, (2-D crack density is ρ =
( 1 /A ) 

∑ 

l (k )2 where 2 l ( k ) is the length of k -th crack and A is ref-

rence area), an analogue of the system ( 2.11 ) has the form dE /E =
ν/ν = −πdρ and is easily integrated: in terms of normalized

rack density ρ̄ = ρ/ ρ∗

/ E 0 = ν/ ν0 = ( 1 − ρ̄) 
πρ∗ (4.1) 

here, in the case of hexagonal grains, ρ∗ = 0.29. 

We note, in conclusion, that the cut-off point ρ∗ for the effec-

ive properties is also predicted in the conventional self-consistent

cheme ( Budiansky and O’Connell, 1976 ). It may seem, therefore,

hat the self-consistent scheme can be used, instead of the above

eveloped model. However, this scheme cannot be applied, for the

ollowing reason: the values of ρ∗ predicted by it for the elastic

nd for the conductive properties are very different ( ρ∗ = 9/16 and

∗ = 9/8, respectively) whereas they should obviously coincide. 
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Fig. 5. Effective elastic and conductive properties of a material with randomly oriented microcracks, as predicted by the conventional differential scheme and by its modifi- 

cation according to Eqs. (3.2) , ( 3.4 ) and ( 3.6 ). 
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Appendix 

A1. Property contribution tensors of inhomogeneities 

This tensor, first introduced by Horii and Nemat-

Nasser (1983) for ellipsoidal pores and cracks the context of

elastic compliance, describes the inhomogeneity contribution

to the overall property of interest. Referring to the book of

Kachanov and Sevostianov (2018) for details, we outline the basic

definitions and facts relevant for the present work. 

We consider a representative volume element V containing an

isolated inhomogeneity of volume V 1 . In the context of elastic

properties, the average, over V strain is a sum 

ε = S 0 : σ 0 + �ε (A1.1)

where S 0 is the compliance tensor of the matrix and σ0 is the far-

field or “remotely applied” stress (that would have been uniform,

at the site of the inhomogeneity, in its absence). The material is

linear elastic, hence the extra strain due to inhomogeneity is a lin-

ear function of σ0 : 

�ε = 

V 1 

V 

H : σ 0 (A1.2)

where H is a fourth-rank compliance contribution tensor of the in-

homogeneity normalized to its volume fraction. In the case of a

flat crack (unit normal n = const along the crack surface), H = S nBn

where B is the displacement discontinuity tensor that gives the

displacement discontinuity vector averaged over the crack surface

S in terms of vector t = σ • n : < u 

+ − u 

− > = B • t . 
Alternatively, one can consider the extra average stress � σ
ue to the inhomogeneity under displacement boundary condi-

ions (such that strains would have been uniform at the site of the

nhomogeneity, in its absence). This defines the stiffness contribu-

ion tensor N of an inhomogeneity: 

σ = 

V 1 

V 

N : ε 0 (A1.3)

The H - and N -tensors are functions of the inhomogeneity shape

nd elastic constants of the matrix and the inhomogeneity. They

re interrelated: N = −C 

0 :H:C 

0 or H = −S 0 :N:S 0 . 

In the context of conductivity (thermal or electric), analogues of

 and N -tensors are the extra flux (thermal or electric), per vol-

me V , under given imposed gradient of temperature or electric

otential, or the extra gradient needed to maintain the same flux

hen the inhomogeneity is introduced. Thus, in the thermal con-

uctivity problem, assuming the Fourier conduction law and ho-

ogeneous boundary conditions (the field of U would have been

niform in V in absence of the inhomogeneity), the change in G

equired to maintain the same heat flux when the inhomogeneity

an be written as 

G = 

V 1 

V 

R · U (A1.4)

here the symmetric second-rank tensor R can be called the resis-

ivity contribution tensor of an inhomogeneity. Alternatively, 

U = 

V 1 

V 

K · G (A1.5)

here K is the conductivity contribution tensor of an inhomogene-

ty. The two tensors are interrelated: K = −k 

0 • R • k 

0 or R = −r 0 • K
 r 0 where k 

0 and r 0 = ( k 

0 ) − 1 are the conductivity and resistivity

ensors of the matrix. 

In the context of conductivity , tensor R for pores of the ellipsoidal

hape (and for them only) can be expressed in terms of Eshelby’s

ensor for conductivity problem s C as follows: 

 = 

V 

∗

V 

1 

k 0 

(
I − s C 

)−1 
(A1.6)

http://dx.doi.org/10.13039/100000104
ЕВРОТЕХ
Выделение
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here I is the second rank unit tensor. In particular, for a

pheroidal pore of aspect ratio γ , tensor s C is expressed in elemen-

ary functions: 

 

K = f 0 ( γ ) ( I − nn ) + ( 1 − 2 f 0 ( γ ) ) nn (A1.7) 

here 

f 0 = 

γ 2 ( 1 − g ) 

2 

(
γ 2 − 1 

) (A1.8) 

nd the shape factor g is expressed in terms of the aspect ratio γ
s follows 

 ( γ ) = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

1 

γ
√ 

1 − γ 2 
arctan 

√ 

1 − γ 2 

γ
, oblate shape ( γ < 1 ) 

1 

2 γ
√ 

γ 2 − 1 

ln 

γ + 

√ 

γ 2 − 1 

γ −
√ 

γ 2 − 1 

, prolate shape ( γ > 1 ) 

(A1.9) 

Then one obtains the following relation for R : 

 = 

V 

∗

V 0 

1 

k 0 
( A 1 I + A 2 nn ) (A1.10) 

here 

 1 = 

1 

1 − f 0 ( γ ) 
, A 2 = 

1 − 3 f 0 ( γ ) 

2 f 0 ( γ ) [ 1 − f 0 ( γ ) ] 
(A1.11) 

n the context of elasticity , tensor H for pores of the ellipsoidal shape

and for them only) can be expressed in terms of Eshelby’s tensor

or the elasticity problem s as follows: 

 = 

[
C 

0 : ( J − s ) 
]−1 

(A1.12) 

here J i jkl = ( 1 / 2 )( δik δ jl + δil δ jk ) is the fourth-rank unit tensor.

or a general ellipsoid, components H ijkl are expressed in terms

f elliptic integrals. They reduce to elementary functions for the

pheroidal shapes, as follows: 

˜ H 1111 ≡ G 0 H 1111 = 

κ( f 0 − f 1 ) 

2 ( 4 κ − 1 ) 
[
2 κ( f 0 − f 1 ) − ( 4 κ − 1 ) f 2 0 

]
+ 

1 

4 [ 1 − ( 2 − κ) f 0 − κ f 1 ] 
;

˜ H 1122 ≡ G 0 H 1122 = 

κ( f 0 − f ) 1 

2 ( 4 κ − 1 ) 
[
2 κ( f 0 − f 1 ) − ( 4 κ − 1 ) f 2 0 

]
+ 

1 

4 [ 1 − ( 2 − κ) f 0 − κ f 1 ] 

˜ H 1133 ≡ G 0 H 1133 = 

−( 2 κ f 0 − f 0 + 2 κ f 1 ) 

4 ( 4 κ − 1 ) 
[
2 κ( f 0 − f 1 ) − ( 4 κ − 1 ) f 2 0 

] ;

˜ 
 3333 ≡ G 0 H 3333 = 

4 κ − 1 − 6 κ f 0 + 2 f 0 − 2 κ f 

4 ( 4 κ − 1 ) 
[
2 κ( f 0 − f 1 ) − ( 4 κ − 1 ) f 2 0 

]
˜ H 1313 ≡ G 0 H 1313 = 

1 

4 [ f 0 + 4 κ f 1 ] 
; ˜ H 1313 ≡ G 0 H 1313 = 

1 

4 [ f 0 + 4 κ f 1 ]

(A1.13)

here 

= 

1 

2 ( 1 − ν0 ) 
, f 1 = 

γ 2 

4 

(
γ 2 − 1 

)2 

[(
2 γ 2 + 1 

)
g − 3 

]
(A1.14) 

nd f 0 , g are given by ( A1.8 ) and ( A1.9 ), respectively. 

In the case of circular crack, γ → 0, g ( γ ) ≈ ( π /2)/ γ ,

 0 ( γ ) ≈ ( π /4) γ , f 1 ( γ ) ≈ ( π /8) γ , and 

 = 

32 

(
1 − ν2 

)
3 ( 2 − ν0 ) E 0 

a 3 

V 

(
nIn − ν0 

2 

nnnn 

)
︸ ︷︷ ︸ (A1.15) 
˜ H 
2. Non-interaction approximation for the effective elastic and 

onductive properties 

For randomly distributed spheroidal pores of identical aspect

atio γ , the effective (isotropic) conductivity of a porous material

s given by 

 = 

k 0 
1 + φ�

(A2.1) 

here 

= A 1 + A 2 / 3 (A2.2) 

nd A 1 and A 2 are given by ( A1.11 ) and φ is the volume fraction. 

For the effective elastic properties of the same material, the ef-

ective bulk, shear, and Young’s moduli are: 

 = 

K 0 

1 + ϕB 

, G = 

G 0 

1 + ϕC 
E = 

E 0 
1 + ϕD 

(A.2.3)

here B and C are shape factors expressed in terms of H -tensor

iven by ( A1.13 ): 

B = 3 K 0 
10 ̃

 H 1111 + 10 ̃

 H 1122 + 16 ̃

 H 1133 + 5 ̃

 H 3333 

15 

C = 2 G 0 
13 ̃

 H 1111 − 11 ̃

 H 1122 − 8 ̃

 H 1133 + 96 ̃

 H 1313 + 8 ̃

 H 3333 

30 

 = E 0 
3 ̃

 H 1111 − ˜ H 1122 + 4 ̃

 H 1313 + 

˜ H 3333 

3 

(A2.4) 

Note that there are two shape factors in the elasticity problem

in contrast with one shape factor in the conductivity problem –

ince there are two independent isotropic elastic constants. 

In the case of randomly oriented cracks, 

B (ν, 0) = 

16 

9 

(
1 − ν2 

)
1 − 2 ν

; C( ν, 0) = 

32 

45 

( 1 − ν) ( 5 − ν) 

2 − ν
;

D ( 0 , ν0 ) = 

16 

45 

(
1 − ν2 

)
( 10 − 3 ν) 

2 − ν
(A2.5) 
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evostianov, I. , Kováčik, J. , Siman ̌cík, F. , 2006. Elastic and electric properties of
closed-cell aluminum foams. Cross-property connection. Mater. Sci. Eng. A-420,

87–99 . 
orquato, S. , 2002. Random Heterogeneous Materials: Microstructure and Macro-

scopic Properties. Springer . 
an Noort, R. , Spiers, C.J. , Pennock, G.M. , 2008. Compaction of granular quartz un-

der hydrothermal conditions: Controlling mechanisms and grain boundary pro-
cesses. J. Geophys. Res. 113, 1–23 B12206 . 

avakin, A.S. , Salganik, R.L. , 1975. Effective characteristics of nonhomogeneous me-

dia with isolated inhomogeneities. Mech. of Solids 10, 65–75 (English transl. of
Izvestia AN SSSR, Mekhanika Tverdogo Tela) . 

u, M.S. , He, M.D. , 1999. Prediction of crack statistics in a random polycrystal dam-
aged by the pile-ups of extrinsic grain-boundary dislocations. Philos. Mag.-A 79

(2), 271–292 . 
Zhang, W. , Huang, Y. , Dai, W. , Jin, X. , Yin, C. , 2016. A fracture analysis of

Ti-10Mo-8V-1Fe-3.5Al alloy screws during assembly. Materials 9 (852), 1–10 . 

immerman, R.W. , 1985. The effect of microcracks on the elastic moduli of brittle
materials. J. Mater. Sci. Lett. 4, 1457–1460 . 

Zimmerman, R.W. , 1991. Elastic moduli of solid containing spherical inclusions.
Mech. Mater. 12, 17–24 . 

http://refhub.elsevier.com/S0020-7683(18)30335-4/sbref0016
http://refhub.elsevier.com/S0020-7683(18)30335-4/sbref0016
http://refhub.elsevier.com/S0020-7683(18)30335-4/sbref0016
http://refhub.elsevier.com/S0020-7683(18)30335-4/sbref0016
http://refhub.elsevier.com/S0020-7683(18)30335-4/sbref0016
http://refhub.elsevier.com/S0020-7683(18)30335-4/sbref0017
http://refhub.elsevier.com/S0020-7683(18)30335-4/sbref0017
http://refhub.elsevier.com/S0020-7683(18)30335-4/sbref0018
http://refhub.elsevier.com/S0020-7683(18)30335-4/sbref0018
http://refhub.elsevier.com/S0020-7683(18)30335-4/sbref0019
http://refhub.elsevier.com/S0020-7683(18)30335-4/sbref0019
http://refhub.elsevier.com/S0020-7683(18)30335-4/sbref0019
http://refhub.elsevier.com/S0020-7683(18)30335-4/sbref0020
http://refhub.elsevier.com/S0020-7683(18)30335-4/sbref0020
http://refhub.elsevier.com/S0020-7683(18)30335-4/sbref0020
http://refhub.elsevier.com/S0020-7683(18)30335-4/sbref0020
http://refhub.elsevier.com/S0020-7683(18)30335-4/sbref0021
http://refhub.elsevier.com/S0020-7683(18)30335-4/sbref0021
http://refhub.elsevier.com/S0020-7683(18)30335-4/sbref0021
http://refhub.elsevier.com/S0020-7683(18)30335-4/sbref0022
http://refhub.elsevier.com/S0020-7683(18)30335-4/sbref0022
http://refhub.elsevier.com/S0020-7683(18)30335-4/sbref0022
http://refhub.elsevier.com/S0020-7683(18)30335-4/sbref0022
http://refhub.elsevier.com/S0020-7683(18)30335-4/sbref0023
http://refhub.elsevier.com/S0020-7683(18)30335-4/sbref0023
http://refhub.elsevier.com/S0020-7683(18)30335-4/sbref0023
http://refhub.elsevier.com/S0020-7683(18)30335-4/sbref0024
http://refhub.elsevier.com/S0020-7683(18)30335-4/sbref0024
http://refhub.elsevier.com/S0020-7683(18)30335-4/sbref0024
http://refhub.elsevier.com/S0020-7683(18)30335-4/sbref0024
http://refhub.elsevier.com/S0020-7683(18)30335-4/sbref0025
http://refhub.elsevier.com/S0020-7683(18)30335-4/sbref0025
http://refhub.elsevier.com/S0020-7683(18)30335-4/sbref0025
http://refhub.elsevier.com/S0020-7683(18)30335-4/sbref0025
http://refhub.elsevier.com/S0020-7683(18)30335-4/sbref0026
http://refhub.elsevier.com/S0020-7683(18)30335-4/sbref0026
http://refhub.elsevier.com/S0020-7683(18)30335-4/sbref0027
http://refhub.elsevier.com/S0020-7683(18)30335-4/sbref0027
http://refhub.elsevier.com/S0020-7683(18)30335-4/sbref0027
http://refhub.elsevier.com/S0020-7683(18)30335-4/sbref0027
http://refhub.elsevier.com/S0020-7683(18)30335-4/sbref0028
http://refhub.elsevier.com/S0020-7683(18)30335-4/sbref0028
http://refhub.elsevier.com/S0020-7683(18)30335-4/sbref0028
http://refhub.elsevier.com/S0020-7683(18)30335-4/sbref0029
http://refhub.elsevier.com/S0020-7683(18)30335-4/sbref0029
http://refhub.elsevier.com/S0020-7683(18)30335-4/sbref0029
http://refhub.elsevier.com/S0020-7683(18)30335-4/sbref0030
http://refhub.elsevier.com/S0020-7683(18)30335-4/sbref0030
http://refhub.elsevier.com/S0020-7683(18)30335-4/sbref0030
http://refhub.elsevier.com/S0020-7683(18)30335-4/sbref0030
http://refhub.elsevier.com/S0020-7683(18)30335-4/sbref0030
http://refhub.elsevier.com/S0020-7683(18)30335-4/sbref0030
http://refhub.elsevier.com/S0020-7683(18)30335-4/sbref0031
http://refhub.elsevier.com/S0020-7683(18)30335-4/sbref0031
http://refhub.elsevier.com/S0020-7683(18)30335-4/sbref0032
http://refhub.elsevier.com/S0020-7683(18)30335-4/sbref0032

	On the effective properties of polycrystals with intergranular cracks
	1 Introduction
	2 Background results on the differential scheme
	2.1 Conductive properties
	2.2 Elastic properties

	3 Modeling the effect of intergranular cracking on the overall properties
	4 Discussion and conclusions
	 Acknowledgments
	 Appendix
	A1 Property contribution tensors of inhomogeneities
	A2 Non-interaction approximation for the effective elastic and conductive properties

	 References


