МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ
ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ
ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ
им. Р.Е. Алексеева

Л.Н. Четырбок, А.Д. Самсонова, В.И. Наумов, Г.Н. Борисова, А.В. Борисов

СПРАВОЧНЫЕ МАТЕРИАЛЫ ПО КУРСУ ОБЩЕЙ И НЕОРГАНИЧЕСКОЙ ХИМИИ

для студентов всех специальностей дневной и вечерней форм обучения

Выпуск 3

Нижний Новгород, 2010

Составители: Л.Н.Четырбок, А.Д.Самсонова, В.И. Наумов, Г.Н.Борисова, А.В.Борисов

УДК 54 (07)

Справочные материалы по курсу общей химии для студентов всех специальностей дневной и вечерней форм обучения/НГТУ; сост.: Л.Н.Четырбок, А.Д.Самсонова и др. . Н.Новгород, 2010.- 46с.

Приведены справочные материалы для практических и лабораторных занятий по курсу общей и неорганической химии.

Научный редактор Г.Н. Паничева Редактор Э..Б. Абросимова

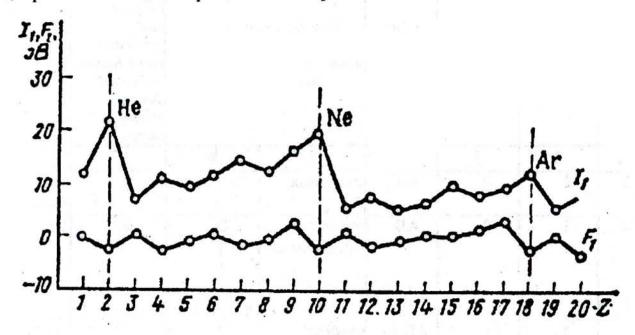
пернодическая система химических элементов д.н.менлетеева

(lepwosta	Pain				LIVE	AC MANA	3 A E M E H T O B							
-		-	=	100	E	8	۸	IN	IIA			III		
		H							(H)	2,00				2 He
-	_	1.0079								MARIN.				4.003
		3 Li	7	9	8	J 9	7 N	0 8	9 F					10 Ne
=	•	JHTMA 6.941	Стифор	77	10.811	угжрод	14.0067	15 9991	18.9984	Stere				20,179
		- Na	1 12	Mg	IS AL	Is Si	15 P	S 91	17 C					It Ar
E	~,	22.9	MACCEM		26.9815	хречиня 28.086	400400 30.9137	ceps 32.06	35.453					ыргон 39.948
		19 K	20	C. S	Se 21	Ti 11	V 33	Cr. 3	Mn 25	5 Fe 26	రి	27	Ni 28	
,	-	19 098	TA-TA-UM	80.0	cranquell 44.9%	47.90	50.942	хром \$1.996	sapraneu \$4.9380	SS.847	100eau 1	332	S8.70	
2		Cu 29	Zn		31 G	12	33 AS	34 Se	35 Br					36 Kr
	٧.	ME36 63 546	EURIK	65.38	FELTINIA 69.72	reparament 72.59	74.9216	26 ST 78.96	106.62 Jag			4	9	83.80
		37 Rb	38		Y 39	12	Nb 41	Mo	Tc	Ru 44	Rh	45	Pd 46	
	9	рубилия 85.47	стромп	3	ACTION RE 906	итрионий.	namodarii 92 906	молифжи	технеция	101.07	102.90	102 905	nathamen 106.4	
>		Ao 47	2	1	49 [8	8	SISB	22	13	+				x Xe
	-	85	T. C.		*	08080	-	reamyp	and a		E			131.30
		SS	26	1	12 5	H	Ta 73	*	2	92 36	1	11	2 2	
	•	-	- Que	7 77 17	JE ONL	radentit 178 40	TEMEL	sort-dpan	PEHHH 186.202	OCUMB 1	RPACINGN 197	Court	M.MTTMUA 105 DO	
5		A	n.	T	1	3	E BE	3	2	1				tk Rn
:	•	200	e E		5 .	1	160	полония	. E					page (222)
		87 Fr	=	100	Ac. 89	×	Db 105	Sg	Bh	Hs 108	A M	109		
II.	2	THE STATE OF	10	_	(22.7)	2000	Дубний (262)		Sopuil (262)	Хассий (265)	\$	Мейтнерий (266)		
Высшие		R,O	RC		R,O,	RO,	R ₂ O ₅	RO,	R,O,	JA 23		RO,		
L .	этикодоков					RH,	RH,	RH,	H2	SPAL JP				
		Ce 31	Pr 59	S PN		Sm 62 En	69	Tb 65	Dy 66 Ho	67	3	69	Yb 70	I. 11
. Лактаноныы		140.12	140.907	144.24	((45)	150.35 cay	151.96 157.25	158.924	162.50 TO.	161.93	35 L91 167 26	168.934	173.04	174.97
**Актинонан		Th 90 12 132 038	Pa 91 U 92 riporacriment ypes (231) 238.03	U 92	Np 93	Pu 94 A:	Am 95 Cm merpenset roped (243) (247)	96 Blk 97 Gep.cma (247)	Cf 98 Es caundopment yeur	99 тейний (254)	Fm 100 Md depart mena	101 235989 (258)	(No) 102 MOScame (259)	(Lr) 103 Any penecuil (260)
		1				1	4	1	,					

2. ЭНЕРГИЯ ИОНИЗАЦИИ И СРОДСТВО К ЭЛЕКТРОНУ НЕКОТОРЫХ АТОМОВ (3В)

Перноды							Группы элементов	ाध आ	емен	FOB								
	IA	ПА	IIIB	IVB	VB	VB VIB VIIB	VIIB		VIIIB		B	B	IIIA	IVA	IIB IIIA IVA VA VIA VIIA VIIIA	VIA	VIIA	VIIIA
													Ī				H	He
																	13,6024,59	24,59
																	0,75	0,75 0,22
	Ľ	Be	10.00										В	ပ	C N O F Ne	0	F	S
7	5,39	9,32		S			7			i			8,30	11,26	8,30 11,26 14,53 13,62 17,42 21,56	13,62	17,42	21,56
	0,59	-0,19		20,30	aHC -	н вила	- энергия ионизации (1), $3+1=3+6$	ин (1),	1+6	+ 6 =	ن + و		0,30	1,27	0,30 1,27 -0,21 1,47 3,45 -0,22	1,47	3,45	-0,22
	Na	Mg		+F – атом присоединяет е с выигрышем эн	ATOM I	рисое	атом присоединяет е с выигрышем энергии	e c Bbi	игрыш	ем эне	ргин		Al	Si	Si P	S	S CI Ar	Ar
~	5,14	7,65		-F-	H MOTI	е прис	единя	ет эле	нофт	(e)			5,99	_	8,15 10,49 10,36 12,97 15,76	10,36	12,97	15,76
	0,34	0,34 -0,22											0,5	1,36	1,36 0,8 2,08 3,61 0,37	2,08	3,61	-0,37
	×	ర్త	Ca Sc	Ë	· \	J)	Mn	Fe	ပ္	ï	Cu	Zn	Ga	હ	V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr	Se	Br	X
4	4,34	6,11	6,56	6,82	6,74	92'9	7,44	7,89	7,87	7,63	7,73	9,39	6,00	7,90	9,82	9,75	11,84	14.0
	0,47	1,93 -0,73 0,39	-0,73	0,39	0,63	86'0	-0,97	0,58	0,94	1,28	8,1	600	0,39	1,74	0,63 0,98 -0,97 0,58 0,94 1,28 1,8 0,09 0,39 1,74 1,07 2,02 3,37 -0,42	2,02	3,37	-0,42
	Rb	Rb Sr	Y	JZ.	Nb	Mo	Tc	Ru	Rh	Pd	Ag	P)	In	Sn	Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I	Te	I	Xe
2	4,18		5,69 6,22 6,84	6,84	88,9	7,10	7,28	7,37	7,46	8,34	7,58	8,99	5,79	7,34	6,88 7,10 7,28 7,37 7,46 8,34 7,58 8,99 5,79 7,34 8,64 9,01 10,45 12,13	10,6	10,45	12,13
	0,42	-1,51 -0,4		0,45	1,13	1,18	0,99	1,51	1,68	1,02	1,30	-0,27	0,2	1,03	0,94	1,96	3,08	-0,45
	Č	Ba	Ba La	Hf	Ta	M	Re	Os	Ir	Pt	Au	Hg	E	Pb	Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn	Po	At	R
9	3,89	5,21	5,21 5,58	7,5	7,89	7,98	7,88	8,50	1,6	6,8	9,23	10,44	6,11	7,42	7,89 7,98 7,88 8,50 9,1 8,9 9,23 10,44 6,11 7,42 12,25 8,43 9,20 10,75	8,43	9,20	10.7
	0,39	-0,48 0,55-0,63	0,55	-0,63	0,15	1,23	0,38	1.4	1,97	2,13	2,31	-0.19	0,15 1,23 0,38 1,44 1,97 2,13 2,31 0,19 0,32 1,03 0,95 1,32 2,80	1.03	0.95	1 32	2 80	•

3. ОТНОСИТЕЛЬНАЯ ЭЛЕКТРООТРИЦАТЕЛЬНОСТЬ


THE PROPERTY OF	4	YII	Период IA ПА IIIB IVB	IAB	AB	VIB	VB VIB VIIB	n alerey aval. S	VШ В		IB	IIB	IB IIIA IVA VA VIA VIIA	IVA	VA	VIA	νпν
	H																
	2,1							34									
2	Ľ	Be											В	၁	z	0	F
	1,0	1,5	ī.										2,0	2,5	3,0	2,5 3,0 3,5 4,0	4,0
3	Na	Mg											A	Si	Ь	S	C
	E 8129 C 114	1,2							•				1,5	Olf-Lau-	2,1		3,0
b	K	Ca	Sc	Ξ	>	V Cr Mn	Mn	Fe	ပ္ပ	ï	D C	Zu	ga	පු	As	Ge As Se Br	Br
	0,8	1,0	1,3	1,6	1,6	1,6	1,5		1,8 1,8	1,8	1,9	9,1 6,1	1,6	1,7	2,0	1,7 2,0 2,4 2,8	2,8
5	Rb	Sr	Y		£	Mo	Nb Mo Tc	_	Ru Rh	Pd	Ag	2	드	Sn	Sb Te	Te	-
	0,8	1,0	1,3	1,6	1,6 1,8 1,9	1,8	6,1	2,2	2,2 2,2	2,2	1,9	1,7	1,7	1,7	1,8	1,7 1,8 2,1 2,6	2,6
9	.s	Ba	La	1	Ta	×	Re	Os Ir	Ir		Au	Au Hg	F	Pb	Bi	Bi Po At	At
	0,7	6,0	1,1	1,3	1,5	6,1 7,1 2,	1,9	2,2 2,2	2,2	2,2	2,4	1,9	1,8	1,7	1,8	1,7 1,8 2,0 2,2	2,2
<i>L</i>	Fr	Ra	Ac														
	17/4	6,0	1,1	1 3													

30 60 70 70 80 80 4. Зависимость орбитальных радиусов атомов от атомного номера элемента 0,15 T, HM 0,25 0,20

6

5. ПЕРИОДИЧЕСКАЯ ЗАВИСИМОСТЬ СРОДСТВА К ЭЛЕКТРОНУ (F_1) И ПЕРВОЙ ЭНЕРГИИ ИОНИЗАЦИИ (I_1) АТОМОВ ОТ АТОМНОГО НОМЕРА ЭЛЕМЕНТА

Сродство к электрону взято с обратным знаком, т.е. приведены первые энергии ионизации отрицательно заряженных ионов Э

6. СВЕДЕНИЯ О НЕКОТОРЫХ ЭЛЕМЕНТАРНЫХ ЧАСТИЦАХ

		Ma	сса покоя		
Частица	Символ	кг	относительная масса	Заряд, Кл	Заряд
Протон	P	1,673 10 ⁻²⁷	1,007276	1,602 10-19	+1
Нейтрон	n	1,675 10-27	1,008665	0	0
Электрон	е	9,109 10 ⁻³¹	0,000549	1,602 10-19	-1

7. РАСПОЛОЖЕНИЕ ВАЛЕНТНЫХ σ-ЭЛЕКТРОННЫХ ПАР ЦЕНТРАЛЬНОГО АТОМА "А" И ПРОСТРАНСТВЕНННАЯ КОНФИГУРАЦИЯ МОЛЕКУЛ (КОМПЛЕКСОВ) АВ_п

Числ	атома	онных пар А	Тип'	Пространстве	енная	Гип ибридиза- ции орбиталсй	Приме- ры
Общее	Связываю- щих	щих	молекулы	конфигурация в (комплекс		атома А,опи- сывающий данную конфигу- рацию	
1	2	3 .	4	5	6	. 7 .	8
2	2	0	AB ₂	линейная	B-A-B	sp	BeH ₂ , BeCl ₂
3	3	0	AB ₃	плоско- треугольная	B A	sp²	BF ₃
	11, 14, 1	4:47	L. Est	1 1 1	В В	10 10 10	1
	2	1 .	AB₂E	угловая	Ā		SnCl ₂
					ВВ	2314 (1	
4	4	0	AB ₄	тетраздри-	В	sp ³	CCI4
	(4)		•	ческая			CH ₄
.:		ē.	# 47		BBB		v, 1 .
	3	1	AB ₃ E	тригонально- пирамидаль- ная	BB		NH ₃ NF ₃
	2	2	AB ₂ E ₂	угловая	A B		H ₂ O OF ₂

Окончание талбл. 1

1	2	3	. 4	5	6	7	8
5	5	0	AB,	тригонально- бипирами- дальная	B B B B	sp³d	PCl,
	4	1	AB₄E	искаженная тетраздри- ческая	B A B		SF4
	3	2	AB ₃ E ₂	Т-образная	B B :	el pri	CIF ₃
	2	3	AB ₂ E ₃	линсйная	B B 		XeF ₂
6	6	0	AB ₆	октаэдричес- кая	B B B B B	sp ³ d ²	SF ₆ SiF ₆ ²⁻
	5	1	AB₅E	квадратно- пирамидаль-, ная	B B B B B		IF, SbF, ²⁻
	4.	2	AB ₄ E ₂	квадратная	B B B		XeF ₄ ICl ₄

8. СТРОЕНИЕ И ЭЛЕКТРИЧЕСКИЕ МОМЕНТЫ ДИПОЛЕЙ (µ) НЕКОТОРЫХ МОЛЕКУЛ

Тип	Пространственная конфигурация	Молекула	µ·10 ²⁹ , Кл×м
A ₂	Гантелевидная	H ₂	0
-		Cl_2	0
		N_2	0
AB	Гантелевидная	CO	0,033
		NO	0,023
		HF	0,640
		HCI	0,347
		HBr	0,263
AB_2	Линейная	CO ₂	0 .
	James Marie	CS ₂	0
		$BeCl_2$	0
AB_2	Угловая	H ₂ O	0,610
•	J Mobile	H ₂ S	0,340
	-1 ×	NO ₂	0,097
		SO ₂	0,531
ABC	Линейная	cos	0,22
	Jimomas	HCN	0.97
AB_3	Плоскотреугольная	BF ₃	0
	Thornerpoyrondian	SO ₃	0
AB_3	Тригонально-пирамидальная	NH ₃	0,494
	Tpm onations impairing	PCl ₃	0,370
	27	PH ₃	0,183
		NF ₃	0,07
AB_4	Тетраэдрическая	CH₄	0
	- Thursday	CC1 ₄	0
AB ₅	Тригонально - бипирамидальная	PC1 ₅	0
AB_6	Октаэдрическая	SF ₆	0

9. ДЛИНА (d) И ЭНЕРГИИ (E) ХИМИЧЕСКОЙ СВЯЗИ

Связь	d, HM	Е, кДж/моль	Связь	<i>d,</i> нм	Е, кДж/моль
C-C	0,154	348	Pb-Pb	0,350	-
C=C	0,135	598	Si-H	0,148	320
C=C	0,120	811	Si-F	0,155	567
C-H	0,109	414	Si-Cl	0,201	382
C-F	0,136	487	Si-Br	0,215	310
C-C1	0,176	340	Si-I	0,243	235
C-I	0,215	214	Ge-H	0,153	291
C-Br	0,194	285	Gc - Cl		338
C-O	-	359	Ge-Br		279
C=O	0,116	695	Sn -H	0,170	258
Si-Si	0,234	222	Sn-Cl	100	318
Ge-Ge	0,244	118	Sn - Br		272
Sn - Sn (β)	0,316	163	Pb-H	(1)	205

10. ПАРАМЕТРЫ ХИМИЧЕСКОЙ СВЯЗИ ДВУХАТОМНЫХ МОЛЕКУЛ

Моле	екула	Энергия связи, кДж/моль	Длина связи, нм	Энергия иони- зации, эВ	Сродство к электрону, эВ
I	H ₂	435,8	0,074	15,46	
	N ₂	946,9	0,110	15,63	5 16 9
	CO	1076,8	0,113	14,02	Sall Carlos
II	He ₂	0,042	0,292	22,45	de H.
	O_2	498,6	0,121	12,11	0,497
	F ₂	159,2	0,142	16,50	3,08
1 12	Cl ₂	243,0	0,199	11,51	2,40
	Br ₂	192,7	0,228	10,64	2,59
	J_2	150,8	0,267	9,29	2.49
	NO	632,7	0,115	9,29	
III	HC1	431,6	0,127	12,76	
	HBr	368,7	0,141	11,68	
	HI	297,5	0,161	10,42	4 12

Молекулы группы I при ионизации теряют связывающие электроны, молекулы группы II — теряют разрыхляющие электроны, а молекулы группы III теряют не связывающие электроны

11. ТИПЫ МЕЖМОЛЕКУЛЯРНЫХ ВЗАИМОДЕЙСТВИЙ

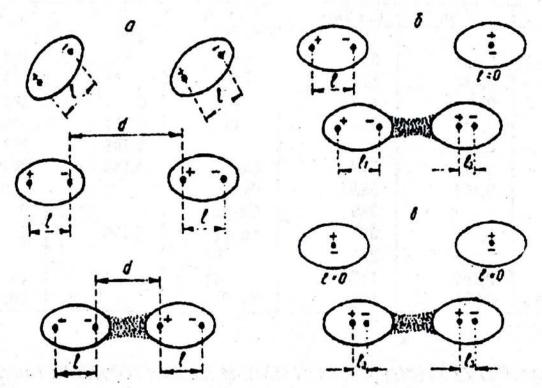


Рис. 1 Типы межмолекулярных взаимодействий: a-ориентационное; b — индукционное; b — дисперсионное; l — длина диполя; d — межмолекулярное расстояние

12. ВКЛАД ОТДЕЛЬНЫХ СОСТАВЛЯЮЩИХ В ПОЛНУЮ ЭНЕРГИЮ МЕЖМОЛЕКУЛЯРНОГО ВЗАИМОДЕЙСТВИЯ

	Электрический		Эфо	рект, кДж/мо	ОЛЬ		
Вещество	момент диполя молекулы×10 ²⁹ , Кл×м	Поляри- зуемость	ориента- ционный	индук- циионный	диспер- сионный		Температу- ра кипения, К
H ₂	0	0,20	0	0	0,17	0,17	20.21
Ar	0	1,63	0	0	8,48	8,48	76
Xe	0	4,00	0	0	18,4	18,4	167
Co	0,39	1,99	0	0	8,79	8,79	81
HCI	3,4	2,63	3,34	1,003	16,72	21,05	188
HBr	2,57	3,58	1,09	0,71	28,42	30,22	Part Control
Hi .	1,25	5,4	0,58	0,295	60,47	61,36	238
NH ₃	4,95	2,21	13,28	1,55	14,72	29,55	239,6
H ₂ O	6,07	1,48	36,32	1,92	8,98	47,22	373

13. **ТЕРМОДИНАМИЧЕСКИЕ КОНСТАНТЫ НЕКОТОРЫХ ВЕЩЕСТВ** Таблица 2

Вещество	ΔH_{298}^{0} ,кДж/моль	ΔG_{298}^{0} ,кДж/моль	S_{298}^{0} ,Дж/моль.К
Ag (ĸ)	0	0	42,6
Ag ⁺ (p)	105,6	77,2	72,7
Ag Br (K)	-100,3	-97,3	107,2
Ag ₂ CrO ₄ (к)	-721,3	-635,0	217,6
AgCl (k)	-127,2	-109,9	96,2
AgI (κ)	-66,9	-66.4	115,5
AgNO ₃ (к)	-124,6	-33,6	141,0
Ag ₂ O (κ)	-31,2	-11,3	122,0
Ag ₂ S (κ)	-32,8	-40,8	144,0
$Ag_2SO_4(\kappa)$	-717,7	-620,0	199,9
Al (κ)	0	0	28,4
Al ³⁺ (p)	-530,0	-490,5	-301,0
AlBr ₃ (κ)	-513,4	-490,6	180,2
$Al_4C_3(\kappa)$	-209	-196	88,95
AlCl ₃ (κ)	-704,6	-629,0	109,4
A1F ₃ (κ)	-1511,4	-1432,1	. 66,5
AlN (k)	-318	-287,4	20.2
Al(OH) ₃ (κ)	-1315	-1157	70,1
Al(OH) ₄ (p)	-1507,5	-1307,5	89,7
$Al_2O_3(\kappa)$	-1676,8	-1583,3	50,95
Al ₂ S ₃ (κ)	-723,4	-492,5	96
$AlI_2(SO_4)_3(\kappa)$	-3444,1	-3102,9	239,4
As (серый)	0	0	35,6
AsCI ₃ (ж)	-305,0	-268,4	212,5
As ₂ O ₃ (K)	-619,2	-538,0	101,7
As ₂ O ₅ (κ)	-914,6	-772,4	105,4
Au (κ)	0	0	47,44
AuCl (κ)	-36,4	-14,6	85,98
AuCl ₃ (κ)	-118,4	-53,6	164,4
Au ₂ O ₃ (κ)	-13,0	-48,77	134
В (к)	0		5,8
BBr ₃ (ж)	-243,0	-237,5	-228,5
BCl ₃ (ж)	-427,2	-387,2	206
$B_2H_6(\Gamma)$	38,5	89,6	232

Вещество	ΔH^0_{298} ,кДж/моль	ΔG_{298}^{0} ,кДж/моль	S_{298}^{0} ,Дж/моль.К
BN (κ)	-252,8	-226,8	14,8
В ₂ О ₃ (к)	-1273.8	-1193.7	54,0
HBO ₂ (K)	-795	-736,1	240,2
H ₃ BO ₃ (κ)	-1094,9	-951,8	88,8
Ва (к)	0	0	67
Ba ²⁺ (p)	-538,0	-561,1	9,6
BaCO ₃ (κ)	-1217,1	-1137,2	113,0
BaCl ₂ (к)	-859,1	-811,4	123,8
BaCrO ₄ (к)	-1368	-1325,2	155,6
ВаО (к)	-553,9	-525,4	70,5
Ba(OH) ₂ (κ)	-945,4	-855,4	100,5
BaS (κ)	-460,5	-456	78,3
BaSO ₄ (K)	-1474,2	-1363,2	132,3
Ве (к)	0	0	9,5
BeCO ₃ (κ)	-982	-944,7	67,29
BeCl ₂ (κ)	-494	-468	63
BeF ₂ (κ)	-1010	-941	45
BeO (k)	-598	-582	14,1
Be(OH) ₂ (κ)	-907	-818	55,6
BeSO ₄ (K)	-1197	-1088	90
Ві (к)	0	0	56,9
Bi(OH) ₃ (к)	-711,8	-580,3	118
Bi ₂ O ₃ (κ)	-578,2	-497,7	151
Br (p)	-131,2	-107,1	83,3
Вг ₂ (ж)	0	0	152,2
HBr (r)	-36,1	53,4	198,7
С (алмаз, к)	1,828	2,834	2,37
С (графит, к)	0	0	5,740
CBr ₄ (r)	79,50	66,94	230,12
CC1 ₄ (ж)	-135,44	-64,7	214,6
CC1 ₄ (r)	-102,93	-60,63	309,74
CH ₄ (r)	-74,86	-50,85	186,44
$C_2H_2(\Gamma)$	226,17	208,61	200,97
$C_2H_4(\Gamma)$	52,28	68,12	219,4
$C_2H_6(\Gamma)$	-54,67	-32,89	229,5

Вещество	ΔH^0_{298} ,кДж/моль	ΔG_{298}^{0} ,кДж/моль	S_{298}^{0} ,Дж/моль.К
C ₃ H ₈ (г)	-103,92	-23,49	270,09
C ₄ H ₆ (Γ)	110,24	150,77	278,92
н-С ₄ Н ₁₀ (г)	-126,23	-17,17	310,33
н-С ₅ Н ₁₂ (г)	-146,54	-8,37	349,18
С ₆ Н ₆ (г)	82,98	129,75	269,38
С ₆ H ₁₂ (г)	-123,22	31,78	298,44
н-С ₆ Н ₁₄ (г)	-167,30	-0,25	388,66
СН₃ОН (г)	-200,95	-162,24	240,04
СН ₃ ОН (ж)	-239,61	-167,20	126,69
С ₂ Н ₅ ОН (г)	-234,75	-168,18	282,60
С ₂ Н ₅ ОН (ж)	-276,9	-174,3	161,1
CO (r)	-110,6	-137,2	197,7
COCl ₂ (r)	-220,3	-266,9	283,91
CO ₂ (Γ)	-393,8	-394,6	213,8
$CO_3^{2-}(p)$	-676,3	-528,1	-54,9
CS ₂ (ж)	88,8	64,5	151,1
HCN (ж)	-109,6	-125,6	113,2
$H_2CO_3(p)$	-699,5	-619,2	187,4
CH3COO (p)	-488,87	-372,99	
Са (к)	0	0 ,	45,45
CaC ₂ (K)	-59,9	-64,9	70,0
CaCO ₃ (к)	-1207,7	-1129,6	91,6
CaCI ₂ (к)	-796,3	-748,9	104,7
CaF ₂ (K)	-1220,5	-1168,1	68,9
CaO (ĸ)	-635	-603,6	39,7
CaH ₂ (K)	-188,7	-149,8	42,0
Ca(OH) ₂ (K)	-986,8	-899,2	83,4
CaSO ₄ (K)	-1424,0	-1320,3	106,7
CaSO ₄ .2H ₂ O(гипс,к)	-2023,98	-1798,7	194,3
Cd (K)	0	0	51,77
CdCO ₃ (K)	-754,6	-674,5	96,7
CdCI ₂ (K)	-390,8	-343,2	115,27
CdO(K)	-260,0	-229,3	54,8
$Cd(OH)_2(\kappa)$	-561,5	-473,8	93,04
CdS (k)	-156,9	-153,2	71,1
CdSO ₄ (κ)	-934,4	-823,9	123,05

Вещество	ΔH^{0}_{298} ,кДж/моль	ΔG_{298}^{0} ,кДж/моль	S_{298}^{0} ,Дж/моль.К
Cl(r)	121,3	105,3	165,1
Cl ⁻ (p)	-167,2	-131,4	56,6
$CI_2(r)$	Charles of the Control of the Contro	0	222,9
$Cl_2O(r)$	75,7	93	266,2
HCl (r)	-92,4	-94,5	186,9
HCl (p)	-166,9	-131,2	56.5
HClO ₄ (ж)	-34,5	84,0	188,4
Со (к)	0	0	30,1
CoCO ₃ (K)	-722,6	-651.0	-
CoCl ₂ (K)	-310,2	-267,5	109,7
Co(NO ₃) ₂ (K)	-421,8	-243,3	192
CoO(K)	-239,7	-215,2	52,8
Co(OH) ₂ (к)	-541,0	-456,1	82,0
Co(OH) ₃ (к)	-726,0	-596,8	100
CoS (k)	-84,5	-96,1	
CoSO ₄ (K)	-889,5	-783,7	117,5
Cr (ĸ)	0	0	23,6
$Cr^{2+}(p)$	-139	-183,4	41,9
Cr ³⁺ (p)	-236,1	-223,2	-215,9
CrCl ₂ (K)	-395,7	-356,6	115,7
CrCl ₃ (K)	-570,3	-501,0	124,8
CrO ₃ (K)	-590,8	-513,8	72,3
$Cr(OH)_2(\kappa)$	-669,0	-576,1	81,2
Cr(OH) ₃ (к)	-995	-846,8	95,4
Cr ₂ O ₃ (K)	-1141.3	-1059,7	81,2
CrO ₂ (K)	-590	-540	48,1
$Cr_2(SO_4)_3(\kappa)$	-3308	-2986	287,9
$(NH_4)_2Cr_2O_7(\kappa)$	-1801,7	A service of the serv	
Сs (к)	0	0	84,35
CsOH (ĸ)	-406,7	-362,3	93,3
Cs ₂ O (к)	-317,6	-274,5	123,8
Cu (ĸ)	0	0	33,2
Cu ²⁺ (p)	66,0	65	-92,8
CuCO ₃ (K)	-595,4	-518,3	88
CuCl (к)	-137,5	-120,1	87,0
CuCl ₂ (K)	-215,7	-171,5	108,2

Вещество	ΔH_{298}^{0} ,кДж/моль	ΔG_{298}^{0} ,кДж/моль	S_{298}^{0} ,Дж/моль.К
CuI ₂ (к)	-21,3	-23,8	159,0
Cu(NO ₃) ₂ (κ)	-305,3	-117	192
CuO (ĸ)	-162,1	-129,5	42,73
Cu(OH) ₂ (к)	-444,6	-359,6	84
(CuOH) ₂ CO ₃ (κ)	-1051	-900,9	211,6
CuS (K)	-53,2	-53,6	66,5
Cu ₂ S (K)	-79,5	-86,3	121
CuSO ₄ (ĸ)	-771,4	-662,2	109,3
Cu ₂ O (к)	-173,3	-150,6	92,99
$F_2(r)$	0	0	202,9
HF (r)	-270,9	-272,99	173,8
Fe (к)	0	0	27,2
Fe ²⁺ (p)	-87,2	-78,96	-110,9
Fe ³⁺ (p)	-46,4	-4,5	-309,2
FeCO ₃ (κ)	-738,6	-665,5	95,5
Fe(CO) ₅ (Γ)	-764,0	-695,2	338
FeCl ₂ (K)	-341,98	-302,6	118,1
FeCl ₃ (K)	-399,7	-334,2	142,4
FeO (K)	-265,0	-244,5	60,8
Fe(OH) ₂ (K)	-562,1	-480,1	88
Fe(OH) ₃ (K)	-827,2	-700,1	105
FeS (κ)	-100,5	-100,8	60,3
FeS ₂ (K)	-163,3	-151,9	52,96
FeSO ₄ (K)	-929,5	-825,5	121,0
Fe ₂ O ₃ (κ)	-822,7	-740,8	87,5
$Fe_2(SO_4)_3(\kappa)$	-2582,0	-2254,6	283,0
Fe ₃ C (K)	25	18,8	108
Fe ₃ O ₄ (к)	-1117,9	-1014,8	146,3
Ga (к)	0	10 minut 20	41,1
Ga(OH) ₃ (к)	-1014,6	-831,78	84,9
Ga ₂ O ₃ (K)	-1089	-998,2	e ropro agreemente p <u>a</u> participal de la constanta de la const
Ge (к)	0	0	31,1
GeO (κ)	-255	-226,8	50,2
GeO ₂ (κ)	-554,7	-500,8	55,27
H (r)	217,98	203,3	114,6

Вещество	ΔH_{298}^0 ,кДж/моль	ΔG_{298}^{0} ,кДж/моль	S_{298}^{0} ,Дж/моль.К
H ⁺ (p)	0	. 0	0
Η ₂ (Γ)	0	0	130,7
Нд (ж)	0	0	75,90
HgCl ₂ (κ)	-228,2	-180,9	140,02
HgO (κ)	-90,9	-58,6	70,29
HgS (k)	-59,0	-56,9	105,4
HgS0 ₄ (κ)	-707,9	-589,0	136,4
Hg ₂ C1 ₂ (κ)	-265,1	-210,8	192.8
Hg ₂ O (к)		-63,3	130,6
Hg ₂ SO ₄ (κ)	-744,7	-627,5	200,7
$I_2(r)$	62,3	19,2	260,6
Γ(p)	-55,9	-51,7	109,4
I ₂ (к)	O O	0	116,5
НІ (г)	26,57	1,78	206,48
HI (p)	-55,2	-51,5	111,3
К (к)	0	0	71,45
K ⁺ (p)	-251,2	-282,3	102,5
KBr (к)	-392,5	-378,8	95,85
KCN (K)	-112,5	-103,9	137,03
K ₂ CO ₃ (к)	-1146,1	-1059,8	156.32
KCl (κ)	-439,5	-408,0	82,56
KF (ĸ)	-567,4	-537,7	66,60
KI (κ)	-327,6	-324,1	110,79
KMnO ₄ (κ)	-813,4	-713,8	171,71
KNO ₂ (K)	-370,3	-281	117,1
KNO ₃ (κ)	-493,2	-393,1	132,93
КОН (к)	-425,8	-380,2	79,32
KOH (p)	-477,3	-440,5	91,6
K ₂ CrO ₄ (к)	-1382,8	-1286,0	193,3
$K_2Cr_2O_7(\kappa)$	-2033,0	-1866	291,2
К ₂ О (к)	-363,2	-323,1	94,1
K ₂ O ₂ (к)	-495.8	-429,8	113,0
K ₂ S (κ)	-428,4	-404,2	111,3
K ₂ SO ₄ (κ)	-1433,7	-1316,4	175,7
Li (ĸ)	0	0	28,6
LiCl (κ)	-408,3	-384,0	59,3

Вещество	ΔH^0_{298} ,кДж/моль	ΔG_{298}^{0} ,кДж/моль	S_{298}^{0} ,Дж/моль.К
LiOH (ĸ)	-487,2	-442,2	42,8
Li ₂ O (K)	-595,8	-562,1	37,87
Mg (ĸ)	0	0	32,7
$Mg^{2+}(p)$	-467	-455,1	138
MgBr ₂ (κ)	-517,6	-472	125,6
MgCO ₃ (K)	-1013	-1029,3	65,7
MgCl ₂ (κ)	-641,1	-591,6	89,8
$MgF_2(\kappa)$	-1113	-1071	57,2
MgO (κ)	-601,8	-569,6	26,9
$Mg(OH)_2(\kappa)$	-924,7	-833,7	63,14
$Mg_2C_3(\kappa)$	-79,5	-83	92,1
MgSO ₄ (κ)	-1301,4	-1158,7	91,6
MgS (κ)	-347,0	-362,0	50,3
Mn (κ)	0	0	32,0
MnCO3 (к)	-881,7	-811,4	109,5
MnCl ₂ (κ)	-481,2	-440,4	118,2
MnO (κ)	-385,1	-363,3	61,5
Mn ₃ O ₄ (κ)	-1387,5	-1282	148,6
MnO ₂ (κ)	-521,5	-466,7	53,1
$Mn(OH)_2(\kappa)$	-700	-618,7	94,9
MnSO ₄ (κ)	-1066,7	-959,0	112,5
$Mn_2O_7(\kappa)$	-726,3	-543,9	
Мо (к)	0	- O .	28,6
$MoO_2(\kappa)$	·-586,1	-533,2	46,28
$MoO_3(\kappa)$	-745,2	-668,1	77.74
$N_2(\Gamma)$	0	0	199,9
$NH_2OH(p)$	-98,3	-23,4	167,4
NH ₃ (Γ)	-46,19	-16,7	192,6
$NH_4^+(p)$	-132,4	-79,5	114,4
NH₄Cl (к)	-314,4	-204,3	95,9
$NH_4NO_3(\kappa)$	-365,4	-183,9	151,1
$(NH_4)_2SO_4(\kappa)$	-1181,1	-901,9	220
NO (r)	90,31	80,6	210,7
$NO_2(r)$	33	51,5	240,2
$NO_3^-(p)$	-207,5	-111,7	147,3

Вещество	ΔH^0_{298} ,кДж/моль	ΔG_{298}^{0} ,кДж/моль	S^0_{298} ,Дж/моль.К
N ₂ O (Γ)	82,1	104,2	220,0
$N_2O_3(r)$	83,3	140,6	307,3
N ₂ O ₄ (ж)	19,05	98,0	209.3
N ₂ O ₄ (Γ)	9,37	98,29	304,3
$N_2O_5(\Gamma)$	11,31	115,22	356,15
$N_2O_5(\kappa)$	-43,16	113,97	178,49
$HNO_2(p)$	-119,2	-55,6	152,7
HNO ₃ (ж)	-174,3	-80,9	155,7
HNO ₃ (Γ)	-135,1	-74,8	266,9
Na (κ)	0	0	51,45
Na ⁺ (p)	-239,9	-262,13	58,91
NaCN (K)	-89,8	-80,4	118,5
NaCI (κ)	-411,1	-384,0	72,12
NaNO ₂ (κ)	-359	-295	106
NaNO ₃ (κ)	-466,7	-365,9	116
NaOH (κ)	-425,6	-380,7	64,4
NaOH (p)	-470	-419,2	48,1
Na ₂ CO ₃ (κ)	1137,5	-1047,5	136,4
Na ₂ O (κ)	-510,8	-376,1	72,4
Na ₂ S (K)	-370,3	-354,8	77,4
$Na_2SO_3(\kappa)$	-1090	-1002	146,0
Na ₂ SO ₄ (к)	-1384,6	-1266,8	149,5
Na ₃ PO ₄ (κ)	-1935,5	-1819	224,7
Na ₂ PbO ₂ (κ)	-704,3	-742	125
Ni (ĸ)	0	0	29,9
NiCl ₂ (κ)	-304,2	-258,0	98,07
Ni(OH) ₃ (κ)	-600,7	-540,3	96
NiO (κ)	-239,7	-211,6	37,9
Ni(OH) ₂ (κ)	-543,5	-458,4	79,9
NiS (κ)	-79	-76,9	52,97
NiSO ₄ (к)	-873,5	-763,8	103,9
O (r)	246,8	231,8	160,9
Ο ₂ (Γ)	0	0	205,0
O ₃ (r)	142,3	162,7	238,8
OH (p)	-230,2	-157,4	-10,8

Вещество	ΔH_{298}^{0} ,кДж/моль	ΔG_{298}^{0} ,кДж/моль	S_{298}^{0} ,Дж/моль.К
H ₂ O (г)	-241,98	-228,8	188,9
H ₂ O (ж)	-286,0	-237,4	70,0
H ₂ O ₂ (ж)	-187,9	-120,5	109,6
Р (белый, к)	0	0	41,1
Р (красный, к)	-17,6	-12, 13	22,8
PCl ₃ (Γ)	-287,02	-260,5	3] 1,7
PCl ₅ (r)	-374,89	-305,4	364,5
РН ₃ (г)	5,44	13,39	210,1
$P_2O_5(\Gamma)$	-2093	-1943	157
P ₂ O ₅ (K)	-1506,24	-1363,98	135,98
H ₃ PO ₄ (ж)	-1271,94	-1138,0	201,87
H ₃ PO ₄ (K)	-1283,65	-1139,7	176,2
HPO ₃ (p)	-983,81	-904,20	150,84
Pb (κ)	0	0	64,8
PbCO ₃ (K)	-700,0	-626,29	131,0
PbCI ₂ (K)	-360,9	-315,62	136,0
PbO (ĸ)	-219,4	-186,2	66,2
PbO ₂ (κ)	-276,75	-218,45	71,97
PbS (K)	-100,4	-98,8	91,2
PbSO ₄ (к)	-912	-814,3	148,67
Pb ₃ O ₄ (κ)	-723,9	-606,58	211,4
S (монокл., к)	0,38	0,188	32,6
S (ромб., к)	0	0	31,9
$SO_2(r)$	-297,2	-300,41	248,2
SO ₃ (r)	-376,2	-370	256,4
$H_2S(\Gamma)$	-20,1	-33,0	205,6
$H_2SO_4(\mathbf{x})$	-814	-690,7	157,0
Se (K)	0	0	42,2
$H_2Se(r)$	33,0	19,72	218,97
Si (ĸ)	0	0	18,8
SiC (k)	-73,3	-70,9	16,62
SiCl ₄ (ж)	-664,8	-598,3	252,6
SiH ₄ (r)	30,6	53,2	204,7
SiO (κ)	-454,62	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	
SiO ₂ (κ)	-911,6	-857,2	41,9
SiO ₂ (ж)	-904,82	-852,0	47,01

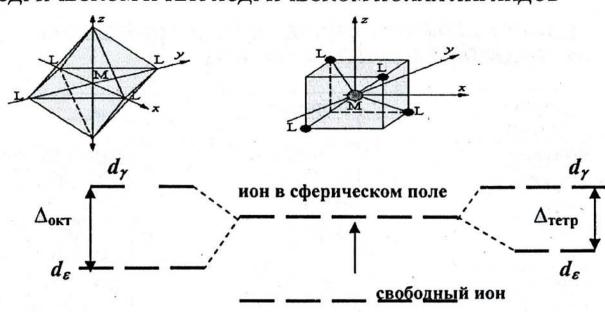
Окончание табл. 2

Вещество	ΔH^0_{298} ,кДж/моль	ΔG_{298}^{0} ,кДж/моль	S_{298}^{0} ,Дж/моль.К
Sn (белое, к)	0	0	51,6
Sn (cepoe, κ)	-2,1	-0,13	44,2
Sn ²⁺ (p)	-10,5	-27,3	-22,7
Sn ⁴⁺ (p)	-2,43	-2,4	-226,1
SnCl ₄ (ж)	-529,2	-458,1	259
SnH ₄ (r)	16,3	187,8	228,7
SnO (K)	-286,2	-258,1	56
$Sn(OH)_2(\kappa)$	-506,3	-491,6	87,7
SnO ₂ (K)	-581,2	-520,2	52
SnS (K)	-110,2	-108,3	77,0
SnS ₂ (κ)	-82,5	-74,1	87,5
H ₂ Te (г)	154,39	138,49	234,30
Ті (к)	0	0	30,6
TiC (κ)	-186,2	-182,6	24,3
TiCl ₂ (K)	-516,7	-472,7	105,9
TiCl ₃ (к)	-721,0	-654,1	139,7
TiCl ₄ (Γ)	-763,2	-726,1	352,2
TiCl ₄ (ж)	-804,6	-737,7	252,3
TiL ₄ (Γ)	-284,5	-381,9	433
TiO (κ)	-518,4	-489,1	34,9
TiO ₂ (κ)	-943,5	-888,2	50,2
$Ti_2O_3(\kappa)$	-1520,5	-1434,1	78,8
TIOH (κ)	-233,5	-190,6	255,2
Tl(OH) ₃ (κ)	-516,6		102,1
T1 ₂ O (к)	-167,4	-153,1	161,1
$Tl_2O_3(\kappa)$	-390,4	-321,4	148,1
Zn (κ)	0	0	41,66
$Zn^{2+}(p)$	-153,74	-147,26	-110,67
ZnCO ₃ (κ)	-818,59	-737,3	82,5
ZnCl ₂ (κ)	-415,33	-369,6	111,54
ZnO (k)	-350,8	-320,88	43,67
$Zn(OH)_2(\kappa)$	-644	-554,79	76,15
ZnS (κ)	-205,6	-200,85	57,78

14. *КОНСТАНТЫ ДИССОЦИАЦИИ КИСЛОТ В ВОДНЫХ РАСТВОРАХ* Таблица 3

Кислота	Формула	Клис
Азотистая	HNO ₂	К _{дис} 4·10 ⁻⁴
Азотистоводородная .	HN ₃	2,6 ·10-5
Азотная	HNO ₃	4,36·10
Алюминиевая (мета)	HAIO ₂	6.10-13
Борная (мета)	HBO ₂	7,5·10 ⁻¹⁰
Борная (орто)	H ₃ BO ₃	(I) $5.8 \cdot 10^{-10}$ (II) $1.8 \cdot 10^{-13}$ (III) $1.6 \cdot 10^{-14}$
Бромоводородная	HBr	1.109
Бромноватая	HBrO ₃	2.10-1
Бромноватистая	HBrO	2,06 · 10-9
Водорода пероксид	H ₂ O ₂	(I) 2,63 ·10 ⁻¹² (II) 1,0·10 ⁻²⁵
Галлиевая	H ₃ GaO ₃	(II) 5·10 ⁻¹¹ (III) 2·10 ⁻¹²
Германиевая	H ₂ GeO ₃	(I) 1,7·10 ⁻⁹ (II) 1,9·10 ⁻¹³
Дитионистая	H ₂ S ₂ O ₄	(I) 5·10 ⁻¹ (II) 4·10 ⁻³
Железистосинеродистая	H ₄ [Fe(CN) ₆]	(III) 1,0·10 ⁻³ (IV) 5,6·10 ⁻⁵
Иодоводородная	HI	1.1011
Иодная (орто)	H₅IO ₆	(I) 3,09·10 ⁻² (II) 7,08·10 ⁻⁹ (III) 2,5·10 ⁻¹³
Йодная (мета)	H1O ₃	1,7·10 ⁻¹
Кремниевая (мета)	H ₂ SiO ₃	(I) 2,2·10 ⁻¹⁰ (II) 1,6·10 ⁻¹²
Марганцовая	HMnO ₄	2·10 ²
Молибденовая	H ₂ MoO ₄	(II) 1·10 ⁻⁶
Мышьяковая (орто)	H ₃ AsO ₄	(I) 5,9810 ⁻³ (II) 1,05·10 ⁻⁷ (III) 3,89·10 ⁻¹²

Кислота	Формула	Кдис
Мышьяковистая (орто)	H ₃ AsO ₃	(II) 6·10 ⁻¹⁰ (II) 1,7·10 ⁻¹⁴
Мышьяковистая (мета)	HAsO ₂	6.10-10
Оловянистая	H ₂ SnO ₂	6·10 ⁻¹⁸
Оловянная	H ₂ SnO ₃	4·10 ⁻¹⁰
Родановодородная	HSCN	1,4·10 ⁻¹
Пирофосфорная	H ₄ P ₂ O ₇	(II) 1,4·10 ⁻¹ (II) 1,1·10 ⁻² (III) 2,1·10 ⁻⁷ (IV) 4,1·10 ⁻¹⁰
Свинцовистая	H ₂ PbO ₂	2.10-16
Селенистая	H ₂ SeO ₃	(I)3,5·10 ⁻³ (II) 5,0·1O ⁻⁸
Селеноводородная	H ₂ Se	(I)1,7·10 ⁻⁴ (II) 1,0·10 ⁻¹¹
Селеновая	H ₂ SeO ₄	(II) $1,0\cdot10^3$ (II) $1,2\cdot10^{-2}$
Серная	H ₂ SO ₄	$\begin{array}{c} \text{(I)}1.10^3\\ \text{(II)}\ 1,2.10^{-2} \end{array}$
Сернистая	H ₂ SO ₃	(I)1,58·10 ⁻² (II) 6,31·10 ⁻⁸
Сероводородная	H ₂ S	(I)6·10 ⁻⁸ (II) 1·10 ⁻¹⁴
Сурьмяная (орто)	H₃SbO₄	4.10-5
Сурьмянистая (мета)	HsbO ₂	1.10-11
Теллуристая	H ₂ TeO ₃	(I)3·10 ⁻³ (II) 2·10 ⁻⁸
Теллуроводородная	H ₂ Te	1.10-8
Теллуровая *	H ₂ TeO ₄	(I)2,29 ·10 ⁻⁸ (II) 6,46·10 ⁻¹²
Тетраборная	$H_2B_4O_7$	(I)1,8·10 ⁻⁴ (II) 1,5·10 ⁻⁵


Кислота	Формула	Кдис
Тиосерная	H ₂ S ₂ O ₃	(I)2,2·10 ⁻¹ (II) 2,8·10 ⁻²
Угольная	H ₂ CO ₃	(I)4,45·10 ⁻⁷ (II) 4,69·10 ⁻¹¹
Фосфористая(орто)	H ₃ PO ₃	(I)1,6·10 ⁻³ (II) 6,3·10 ⁻⁷
Фосфорная (орто)	H ₃ PO ₄	(I)7,52·10 ⁻³ (II) 6,31·10 ⁻⁸ (III) 1,26·10 ⁻¹²
Фосфорноватистая	H ₃ PO ₂	7,9 ·10-2
Фтороводородная	HF	6,61·10 ⁻⁴
Хлористая	HClO ₂	5·10 ⁻³
Хлороводородная(соляная)	HC1	1.107
Хлорноватистая	HC10	5,01·10 ⁻⁸
Хромовая	H ₂ CrO ₄	(I) 1,8·10 ⁻¹ (II) 3,16·10 ⁻⁷
Циановодородная	HCN	7,9·I0 ⁻¹⁰
Муравьиная	НСООН	1,77·10-4
Уксусная	CH₃COOH	1,75·10 ⁻⁵

15. КОНСТАНТЫ ДИССОЦИАЦИИ НЕОРГАНИЧЕСКИХ ОСНОВАНИЙ В ВОДНЫХ РАСТВОРАХ

Основание	Формула	Кдис	
Гидроксид			
алюминия	A1(OH) ₃	(III) 1,38·10 ⁻⁹	
аммония	NH ₄ OH	1.79·10-5	
бария	Ba(OH) ₂	2,3·10 ⁻¹	
галлия	Ga(OH) ₃	(II) 1,6·10 ⁻¹¹ (III) 4·10 ⁻¹²	
железа (II)	Fe(OH) ₂	(II) 1,3·10 ⁻⁴	
железа (III)	Fe(OH) ₃	(II) 1,82·10 ⁻¹¹ (III) 1,35·10 ⁻¹²	
кадмия	Cd(OH) ₂	(II) 5,0·10 ⁻³	

кальция	Ca(OH) ₂	(II) 4,3·10 ⁻²
кобальта	Co(OH) ₂	(II) 4·10 ⁻⁵
лития	Li(OH)	6,75·10 ⁻¹
магния	Mg(OH) ₂	(II) 2,5·10 ⁻³
марганца	Mn(OH) ₂	(II) 5,0·10 ⁻⁴
меди	Cu(OH) ₂	(II) 3,4·10 ⁻⁷
натрия	NaOH	5,9
никеля	Ni(OH) ₂	(II) 2,5 ·10 ⁻⁵
ртути	Hg(OH) ₂	(I) 3,0·10 ⁻¹¹ (II) 5,0·10 ⁻¹²
свинца	Pb(OH) ₂	$(1) 9,6 \cdot 10^{-4}$
серебра	AgOH	1,1.104
стронция	Sr(OH) ₂	(II) 1,5·10 ⁻¹
хрома	Cr(OH) ₃	(III)1,02·10 ⁻¹⁰
цинка	Zn(OH) ₂	(II) 4·10 ⁻⁵
таллия	TIOH	> 10 ⁻¹

16. ДИАГРАММЫ РАСЩЕПЛЕНИЯ **d**-ОРБИТАЛЕЙ В ОКТАЭДРИЧЕСКОМ И ТЕТРАЭДРИЧЕСКОМ ПОЛЯХ ЛИГАНДОВ

17. КОНСТАНТЫ НЕСТОЙКОСТИ КОМПЛЕКСНЫХ ИОНОВ

Комплексный ион	Кнест	Комплексный ион	Кнест
$Ag(NH_3)_2^+$	9,31. 10-8	Cu (NH ₃) ₄ ²⁺	2,14·10 ⁻¹³
Ag(CN) ₂	8,0. 10-22	Cu(CN)2	1,0.10-24
Ag(CN) ₄ ³ -	2,1 ·10 ⁻²¹	Cu(CN) ₄ ³ -	5,0·10 ⁻³¹
Ag(SCN) ₂	2,7 ·10-8	Cu(CN) ₄ ² -	5,0·10 ⁻²⁸
Ag(SCN) ₄ ³ -	1,3·10 ⁻¹¹	CuCl ₄ ²⁻	6,3·10 ⁻⁶
$Ag(SO_4)_2^{3-}$	0,59	CuBr ₂	1,3·10 ⁻⁶
AgCl ₂ -	1,76.10-5	CuI ₂ -	1,75·10-9
AgCl ₃ ² -	4,0 ·10 ⁻⁶	Cu(OH) ₄ ² -	7,6·10 ⁻¹⁷
AgCl ₄ ³⁻	1,2· 10 ⁻⁶	Cu(SO ₃) ₂ ³ -	3,1·10 ⁻⁹
AgBr ₂	7,8.10-8	Fe(CN) ₆ ⁴ -	1,0.10-24
AgI_3^{2-}	1,4·10 ⁻¹⁴	Fe(CN) ₆ ³ -	1,0.10-31
AgI ₄ ³⁻	1,8·10 ⁻¹⁴	Fe(SO ₄) ₂	1,05·10 ⁻³
AgBr ₄ ³⁻	6,3·10 ⁻¹⁰	Hg(CN) ₄ ²	4,0.10-42
$Ag(S_2O_3)_2^{3-}$	2,5·10 ⁻¹⁴	HgCl ₄ ²⁻	8,5·10 ⁻¹⁶
$Ag(SO_3)_2^{3-}$	4,5 ·10 ⁻⁹	HgBr ₄ ²⁻	2,0.10-22
A1F ₆ ³ -	1,44·10 ⁻²⁰	HgI ₄ ²⁻	1,48·10 ⁻³⁰
A1F ₄	1,8·10 ⁻¹⁸	Hg(SCN) ₄ ² -	5,9.10-22
Au(CN) ₂	5,0 ·10 ⁻³⁹	$Hg(S_2O_3)_2^{2-}$	3,6·10 ⁻³⁰
Au(SCN) ₂	1,0.10-23	Hg(NH ₃) ₄ ²⁺	5,3·10 ⁻²⁰
Au(SCN) ₄	1,0.10-42	$Mg(NH_3)_4^{2+}$	10,9
AuCl ₄	5,0 ·10 ⁻²²	$Ni(NH_3)_4^{2+}$	1,12.10-8
AuBr ₂	4,0 ·10 ⁻¹³	$Ni(NH_3)_6^{2+}$	1,86·10 ⁻⁹
Cd(NH3)42+	7,56 ·10 ⁻⁸	Ni(CN) ₄ ² -	1,8·10 ⁻¹⁴
$Cd(NH_3)_6^{2+}$	7,3·10 ⁻⁶	PbCl ₄ ²⁻	$7,1\cdot10^{-3}$
$Cd(CN)_4^{2-}$	1,41· 10 ⁻¹⁹	PbBr ₄ ² -	1,0·10 ⁻³
Cd(SCN) ₆ ⁴ -	1,03	PbI ₄ ² -	1,4.10-4
CdCl ₄ ² -	9,3·10 ⁻³	PtCl ₄ ²⁻	2,5·10 ⁻¹⁷
CdCl ₆ ⁴⁻	2,6· 10 ⁻³	PtBr ₄ ² -	4,0.10-21
CdBr ₄ ² -	2,0.10-4	PtL ₄ ²⁻	2,5·10 ⁻³⁰

Комплексный ион	Кнест	Комплексный ион	Кнест
CdI ₄ ²⁻	8,0.10-7	PdCl ₄ ² -	6,3·10 ⁻¹³
CdI ₆ ⁴⁻	1,0·10-6	PdBr ₄ ² -	8,0.10-17
Co(NH ₃) ₆ ²⁺	7,75.10-6	$Zn(NH_3)_4^{2+}$	3,46·10 ⁻¹⁰
Co(NH ₃) ₆ ³⁺	$3,1\cdot10^{-33}$	Zn(CN) ₄ ² -	1,3.10-17
Co(CN) ₆ ⁴⁻	1,0.10-19	Zn(SCN) ₄ ² -	5,0.10-2
Co(CN) ₆ ³ -	1,0.10-64	Zn(OH) ₄ ² -	3,6·10 ⁻¹⁶
Co(SCN) ₄ ² -	5,5·10 ⁻³	ZnCl ₄ ²⁻	1
$Cu(NH_3)_2^+$	1,35.10-11	ZnI ₄ ² -	220

18. ДЛИНЫ ВОЛН СПЕКТРА И СООТВЕТСТВУЮЩИЕ ИМ ОКРАСКИ

Интервалы длин волн поглощаемого света, λ , нм	Цвет поглощаемого излучения	Дополнительный цвет (наблюдаемый цвет раствора)
400-435	фиолетовый	желто-зеленый
435-480	синий	желтый
480-490	зеленовато-синий	оранжевый
490-500	сине-зеленый	красный
500-560	зеленый	пурпурный
560-580	желто-зеленый	фиолетовый
580-595	желтый	синий
595-605	оранжевый	зеленовато-синий
605-730	красный	сине-зеленый
730-760	пурпурный	Зеленый

19. РАСТВОРИМОСТЬ НЕОРГАНИЧЕСКИХ ВЕЩЕСТВ В ВОДЕ ПРИ КОМНАТНОЙ ТЕМПЕРАТУРЕ

Ионы	Br ⁻	CH₃COO ⁻	CN-	CO ₃ ² -	Cl	F	Γ	NO ₃	OH.	PO ₄ 3-	S ²⁻	SO ₄ ²	SO ₃ ² -
Ag ⁺ Al ³⁺	Н	M	Н	Н	Н	P	Н	P	-	Н	Н	M	Н
Al ³⁺	P	, -	?	- 1	P	M	. P	P	Н	Н	-	P	-
Ba ²⁺	P	P	P	H	P	M	P	P	P	Н	P	Н	Н
Ba ²⁺ Be ²⁺ Bi ³⁺	P	-	?	-	P	P	P	P	M	Н	-	P	H
Bi ³⁺	-	-		-	•	H	Н	-	Н	Н	H.	-	Н
Ca ²⁺	P	P	P	H	P	H	P	P	M	Н	M	M	Н
Cd ²⁺	P	P	M	-	P	P	P	P	Н	H	H	P	Н
Co ²⁺	P	P	Н	-	P	P	P	P	Н	H	Н	P	Н
Ca^{2+} Cd^{2+} Co^{2+} Cr^{3+} Cs^{+} Cu^{2+} Fe^{2+}	P	-	Н	-	P	M	Н	P	H	Н	-	P	-
Cs ⁺	P	P	P	P	P	P	P	P	P	P	P	P	P
Cu ²⁺	P.	P	Н	-	P	P	-	P	Н	н	Н	P	Н
Fe ²⁺	P	P	Н	Н	P	M	P	P	Н	Н	Н	P	Н
Fe ³⁺	P	-	Н	-	P	Н	-	P	Н	Н	-	P	-
H ⁺	P	∞	œ	M	P	P	P	∞	∞	P	M	. ∞	P
Hg ²⁺	M	P	P	-	P	-	Н	-		Н	Н	-	Н
Hg ₂ ²⁺ K ⁺ Li ⁺	Н	M	-	Н	H	M	H	- 1	-	Н	-	Н	-
K ⁺	P	Ρ.	P	P	P	P	· P	P	P	P	P	P	P
Li ⁺	P	P	P	P	P	M	P	P	P	Н	P	P	P
Mg ²⁺	P	P	P	M	P	H	P	P	H	Н	H	P	M
Mg ²⁺ Mn ²⁺	P	P	H	-	P	P	P	P	Н	Н	Н	P	Н
NH ₄ ⁺	P	P	P	P	P	P	P	P	P	P	-	P	P
Na ⁺	P	P	P	P	P	P	P	P	P	P	P	P	P
Ni ²⁺	P	P	H	-	P	P	P	P	H	Н	H	P	H
Pb ²⁺	M	P	Н	-	M	H	Н	P	H	H	Н	Н	H
Rb ⁺	P	P	P	P	P	P	P	P	P	Н	P	P	P
Sn ²⁺	-	-	-		-	P	M	-	H	Н	H	-	-
Sr ²	P	P	P	Н	P	Н	P	P	M	Н	P	Н	H
TI ⁺⁺	M	P	Ρ.	P	M	P	Н	P	P	M	Н	M	P
Zn ²⁺	P	P	Н	-	P	M	P	P	Н	Н	H	P	H

р— хорошо растворимый (> 1 г на 100 г H_2O); м — малорастворимый; н — практически нерастворимый (< 0,1 г на 100 г H_2O); (-) — вещество не существует или разлагается водой; ∞ - неограниченная растворимость; ? — нет данных

20. ПРОИЗВЕДЕНИЕ РАСТВОРИМОСТИ ТРУДНОРАСТВОРИМЫХ В ВОДЕ СОЕДИНЕНИЙ

Вещество	ПР	Вещество	ПР
AgBr	5,3·10 ⁻¹³	Hg ₂ CO ₃	9-10-17
AgCH ₃ COO	4,0.10-3	Hg ₂ Cl ₂	1,3·10 ⁻¹⁸
AgCN	1,4·10 ⁻¹⁶	Hg ₂ I ₂	4,5·10 -29
Ag ₂ CO ₃	1,2.10-12	HgS (красная)	4,0.10-53
AgCl	1,78·10 ⁻¹⁰	Hg ₂ S	1.10-47
Ag ₂ CrO ₄	1,1.10-12	Hg ₂ SO ₄	6,8·10 ⁻⁷
Ag ₂ Cr ₂ O ₇	1,0.10-10	KC104	1,1·10 ⁻²
AgI	8,3·10 ⁻¹⁷	KIO ₄	8,3·10-4
Ag ₃ PO ₄	1,3.10-20	La(OH) ₃	6,5·10 ⁻²⁰
Ag ₂ S	2,0.10-50	Li ₂ CO ₃	4,0.10-3
AgSCN	1,1.10-12	LiF	1,7·10 ⁻³
Ag ₂ SO ₄	1,6·10-5	Li ₃ PO ₄	3,2·10-9
AgOH	1,6·10-8	MgCO ₃	2,1.10-5
A1(OH) ₃	1.10-32	MgF ₂	6,5·10-9
AuBr	5,0.10-17	Mg(OH) ₂	6,0.10-10
AuCl	2,0.10-13	MnCO ₃	1,8·10-11
AuCl ₃	3,2·10 ⁻²⁵	Mn(OH) ₂	1,9·10 ⁻¹³
AuI	1,6·10 ⁻²³	MnS	2,5·10 -10
BaCO ₃	4,0-10 -10	Na ₃ AlF ₆	4.10 -10
BaCrO ₄	1,2·10 ⁻¹⁰	NaIO ₄	3.10-3
BaF ₂	1,1.10 -6	Ni(CN) ₂	3.10-23
BaSO ₄	1,1.10-10	NiCO ₃	1,3·10 ⁻⁷
Be(OH) ₂	6,3.10-22	Ni(OH) ₂	2·10 -15
Bi(OH) ₃	4,3·10 -31	α-NiS	3,2·10 -19
Bi ₂ S ₃	1.10-97	β-NiS	1,0-10 -24
CaCO ₃	3,8·10 ⁻⁹	γ-NiS	2,0.10-26
CaCrO ₄	7,1.10-4	PbBr ₂	9,1·10 -6
CaF ₂	4,0.10-11	PbCO ₃	7,5·10 -14
Ca(OH) ₂	5,5·10-6	PbCl ₂	1,6·10-5
$Ca_3(PO_4)_2$	2·10 ⁻²⁹	PbCrO ₄	1,8·10 ⁻¹⁴
CaSO ₄	2,5·10-5	PbF ₂	2,7·10 ⁻⁸
CdCO ₃	1,0.10-12	PbI ₂	1,1·10-9
Cd(OH) ₂	2,2·10 ⁻¹⁴	PbS	2,5·10 ⁻²⁷
CoCO ₃	1,05·10 ⁻¹⁰	PbSO ₄	1.6·10 ⁻⁸

Вещество	ПР	Вещество	ПР
Co(OH) ₂	1,6·10-15	Sb(OH) ₃	4.10-42
Cr(OH) ₂	1.0-10 -17	Snl ₂	8,3·10 ⁻⁶
Cr(OH) ₃	6,3·10 -31	Sn(OH) ₂	6,3·10 ⁻²⁷
CuBr	5,25·10 ⁻⁹	Sn(OH) ₄	1.10-57
CuCN	3,2·10 ⁻²⁰	SnS	2,5·10 ⁻²⁷
CuCO ₃	2,5·10 ⁻¹⁰	SrCO ₃	1,1.10-10
CuC ₂ O ₄	3.10-8	SrCrO ₄	3.6·10 ⁻⁵
CuCl	1,2·10-6	SrF ₂	2,5·10-9
CuI	1,1.10-12	Sr(OH) ₂	3,2·10 ⁻⁴
Cu(OH) ₂	2,2.10-20	SrSO ₄	3,2·10 ⁻⁷
(CuOH) ₂ CO ₃	1,7·10 ⁻³⁴	Tl ₂ CO ₄	4.10-3
CuS	6,3·10 ⁻³⁶	TICI	1,7·10 ⁻⁴
Cu ₂ S	2,5·10 ⁻⁴⁸	Tl ₂ CrO ₄	9,8·10 ⁻¹³
FeCO ₃	3,5·10-11	T1(OH) ₃	6,3·10 ⁻⁴⁶
Fe(OH) ₂	8,0-10-16	ZnCO ₃	1.45-10 ⁻¹¹
Fe(OH) ₃	6,3·10 ⁻³⁸	Zn(OH) ₂	1,2.10-17
FePO ₄	1,3·10 ⁻²²	α-ZnS	1,6.10-24
FeS	5.10-18	β-ZnS	2,5·10 ⁻²²

21. СТАНДАРТНЫЕ ПОТЕНЦИАЛЫ МЕТАЛЛИЧЕСКИХ ЭЛЕКТРОДОВ (T=298K)

		I dominique
Электрод	Электродная реакция	E ⁰ , B
Li ⁺ /Li	$Li^{+} + e = Li$	-3,045
Rb ⁺ /Rb	$Rb^++e=Rb$	-2,925
K ⁺ /K	$K^++e=K$	-2,924
Cs ⁺ /Cs	$Cs^+ + e = Cs$	-2,923
Ba ²⁺ /Ba	$Ba^{2+}+2e=Ba$	-2,905
Sr ²⁺ /Sr	$Sr^{2+} + 2e = Sr$	-2,888
Ca ²⁺ /Ca	$Ca^{2+}+2e=Ca$	-2,866
Na ⁺ /Na	$Na^+ + e = Na$	-2,714
Mg ²⁺ /Mg	$Mg^{2+}+2e=Mg$	-2,363
Be ²⁺ /Be	$Be^{2+}+2e=Be$	-1,847

Al ³⁺ /Al	$Al^{3+}+3e = A1$	-1,663
Ti ²⁺ /Ti	$Ti^{2+} + 2e = Ti$	-1,63
Mn ²⁺ /Mn	$Mn^{2+} + 2e = Mn$	-1,179
Cr ²⁺ /Cr	$Cr^{2+}+2e = Cr$	-0,913
Zn ²⁺ /Zn	$Zn^{2+}+2e=Zn$	-0,763
Cr ³⁺ /Cr	$Cr^{3+}+3e = Cr$	-0,744
Fe ²⁺ /Fe	$Fe^{2+} + 2e = Fe$	-0,44
Cd ²⁺ /Cd	$Cd^{2+} + 2e = Cd$	-0,403
Co ²⁺ /Co	$Co^{2+}+2e=Co$	-0,277
Ni ²⁺ /Ni	$Ni^{2+}+2e = Ni$	-0,25
Sn ²⁺ /Sn	$Sn^{2+} + 2e = Sn$	-0,136
Pb ²⁺ /Pb	$Pb^{2+}+2e=Pb$	-0,126
Fe ³⁺ /Fe	$Fe^{3+}+3e = Fe$	-0,037
H ⁺ /1/2H ₂	$H^+ + e = 1/2 H_2$	0,000
Cu ²⁺ /Cu	$Cu^{2+}+2e=Cu$	0,337
Cu ⁺ /Cu	$Cu^+ + e = Cu$	0,52
Ag ⁺ /Ag	$Ag^+ + e = Ag$	+0.799
Hg ²⁺ /Hg	$Hg^{2+}+2e=Hg$	+0,854
Pt ²⁺ /Pt	$Pt^{2+} + 2e = Pt$	+1,188
Au ³⁺ /Au	$Au^{3+} + 3e = Au$	+1,498
Au ⁺ /Au	$Au^+ + e = Au$	+1,692

22. СТАНДАРТНЫЕ ЭЛЕКТРОДНЫЕ ПОТЕНЦИАЛЫ В ВОДНЫХ РАСТВОРАХ

Электродный процесс	E ⁰ , B
Азот	
NO_2 + H_2O +e = NO + $2OH$	-0,46
$NO_2^- + 6H_2O + 6e = NH_4OH + 7OH^-$	-0,15
$NO_3^- + 2H_2O + 3e = NO + 4OH^-$	-0,14
NO_3 + $7H_2O$ + $8e = NH_4OH + 9OH$	-0,12
$NO_3^- + H_2O + 2e = NO_2^- + 2OH^-$	+0,01
$2NO_2^- + 4H_2O + 6e = N_2 + 8OH^-$	+0,41
$2NO_2 + 4H_2O + 6e = N_2 + 8OH^2$	+0,41

Электродный процесс	E^0, B
$2NO_2 + 4H_2O + 8e = N_2 + 8OH^-$	+0,53
$NO_3^- + 2H^+ + e = NO_2 + H_2O$	+0,78
$NO_3^- + 2H^+ + 2e = NO_2^- + H_2O$	+0,94
$NO_3^- + 10H^+ + 8e = NH_4^+ + 3H_2O$	+0,87
$NO_3^- + 4H^+ + 3e = NO + 2H_2O$	+0,96
$HNO_2 + H^+ + e = NO + H_2O$	+1,00
$2NO_3^- + 10H^+ + 8e = N_2O + 5H_2O$	+1,116
$2NO_3 + 12H^+ + 10e = N_2 + 6H_2O$	+1,246
$2HNO_2 + 4H^+ + 4e = N_2O + 3H_2O$	+1,297
$2HNO_2 + 6H^+ + 6e = N_2 + 4H_2O$	+1,45
Алюминий	
$AIO_2^- + 2H_2O + 3e = A1 + 4OH^-$	-2,35
$[Al(OH)_4]^2 + 3e = Al + 4OH^2$	-2,35
$AlF_6^{3-} + 3e = Al + 6F$	-2,07
$A1^{3+}+3e=A1$	-1,663
$Al(OH)_3 + 3H^+ + 3e = Al + 3H_2O$	-1,471
$A1O_2^- + 4H^+ + 3e = A1 + 2H_2O$	-1,262
Барий	
$Ba^{2+}+2e=Ba$	-2,905
Бериллий	
$Be^{2+} + 2e = Be$	-1,847
$BeO_2^{2-} + 4H^+ + 2e = Be + 2H_2O$	-0,909
Бор	7
$BF_4^- + 3e = B + 4F^-$	-1,04
32	
$H_3BO_3 + 3H^+ + 3e = B + 3H_2O$	-0,869
$BO_3^{3-} + 6H^+ + 3e = B + 3H_2O$	-0,165
Бром	
$2BrO^{-} + 2H_2O + 2e = Br_2 + 4OH^{-}$	+0,45
$2BrO_3^- + 6H_2O + 10e = Br_2 + 12OH^-$	+0,5
$BrO_3^- + 2H_2O + 4e = BrO^- + 4OH^-$	+0,54

Электродный процесс	E ⁰ , B
$BrO_3^- + 3H_2O + 6e = Br^- + 6OH^-$	+0,61
$BrO^{-} + H_2O + 2e = Br^{-} + 2OH^{-}$	+0,76
$Br_2(x) + 2e = 2Br$	+1,065
$BrO_3^- + 6H^+ + 6e = Br^- + 3H_2O$	+1,44
$HBrO + H^{\dagger} + 2e = Br^{\dagger} + H_2O$	+1,34
$2BrO_3^- + 12H^+ + 10e = Br_2 + 6H_2O$	+1,52
$2HBrO + 2H^{+} + 2e = Br_{2} + 2H_{2}O$	+1,59
Ванадий	
$V^{2+} + 2e = V$	-1,175
$V^{3+} + e = V^{2+}$	-0,255
$VO_2^+ + 4H^+ + 5e = V + 2H_2O$	-0,25
$VO_4^{3-} + 6H^+ + 2e = VO^+ + 2H_2O$	+1,256
Висмут	
$Bi_2O_3 + 3H_2O + 6e = 2Bi + 6OH^-$	-0,46
$Bi^{3+} + 3e = Bi$	+0,215
Водород	
$H_2 + 2e = 2H^2$	-2,251
$2H_2O + 2e = H_2 + 2OH^-$	-0,828
$2H^+ + 2e = H_2$	0,000
$H_2O_2 + 2H^+ + 2e = 2H_2O$	+1,776
Вольфрам	Water Street
$WO_4^{2-} + 4H_2O + 6e = W + 8OH^{-}$	-1,05
$WO_4^{2-} + 8H^+ + 6e = W + 4H_2O$	+0,049
$2WO_4^{2-} + 6H^+ + 2e = W_2O_5 + 3H_2O$	+0,801
Германий	
$H_2GeO_3 + 4H^+ + 4e = Ge + 3H_2O$	-0,13
$Ge^{2+} + 2e = Ge$	≈0,000
Железо	
$Fe(OH)_3 + e = Fe(OH)_2 + OH^-$	-0,56
$Fe^{2+} + 2e = Fe$	-0,44
$Fe^{3+} + 3e = Fe$	-0,037
$Fe(OH)_3 + H^+ + e = Fe(OH)_2 + H_2O$	+0,271

Электродный пр	оцесс	E ⁰ , B
$Fe(CN)_6^{3-} + e = Fe(CN)_6^{4-}$		+0,356
$FeO_4^{2-} + 4H_2O + 3e = Fe(OH)_3 +$	5OH ⁻	+0,72
$Fe^{3+} + e = Fe^{2+}$		+0,771
$FeO_4^{2-} + 8H^+ + 3e = Fe^{3+} + 4H_2O$		+1,7
	Золото	
$Au(CN)_2 + e = Au + 2CN$	3/4K4/34X3	-0,61
$Au^{3+} + 2e = Au^+$		+1,401
$Au^{3+} + 3e = Au$		+1,498
$Au^+ + e = Au$		+1,692
	Иод	
$2IO_3$ + $6H_2O$ + $10e = I_2 + 12OH$		+0,21
$IO_3^- + 3H_2O + 6e = I^+ + 6OH^-$		+0,25
$2IO_{1}^{2} + 2H_{2}O + 2e = I_{2} + 4OH_{1}^{2}$		+0,45
$IO^{-} + H_2O + 2e = I^{-} + 2OH^{-}$		+0,49
$I_2 + 2e = 2I^-$		+0,536
$IO_3^- + 2H_2O + 4e = IO^- + 4OH^-$		+0,56
$IO_3^- + 6H^+ + 6e = I^- + 3H_2O$	PARTY TO SELECT	+1,085
$2IO_3^- + 12H^+ + 10e = I_2 + 6H_2O$		+1,19
$IO_4^- + 8H^+ + 8e = I^- + 4H_2O$		+1,4
$2H IO + 2H^{+} + 2e = I_2 + 2H_2O$		+1,45
$IO_4^- + 2H^+ + 2e = IO_3^- + H_2O$	178.00 (4.7)	+1,653
	Кадмий	
$Cd(CN)_4^{2-} + 2e = Cd + 4CN^{-}$		-1,19
$Cd(NH_3)_4^{2+} + 2e = Cd + 4NH_3$		-0,61
$Cd^{2+}+2e=Cd$		-0,403
	Калий	
$K^+ + e = K$		-2,924
	Кальций	
$Ca^{2+} + 2e = Ca$		-2,866
	Кислород	
$O_2 + 2H_2O + 4e = 4OH^2$		+0,401
$O_2 + 2H^+ + 2e = H_2O_2$		+0,682

Электродный процесс	E ⁰ , B
$H_2O_2 + 2e = 2OH$	+0,88
$O_2 + 4H^+ + 4e = 2H_2O$	+1,228
$O_3 + H_2O + 2e = O_2 + 2OH^2$	+1,24
$O_3 + 6H^+ + 6e = 3H_2O$	+1,511
$H_2O_2 + 2H^+ + 2e = 2H_2O$	+1,776
Кобальт	
$Co(OH)_2 + 2e = Co + 2OH^-$	-0,73
$[Co (NH_3)_6]^{2+} + 2e = Co + 6NH_3$	-0,42
Co ²⁺ +2e=Co	-0,277
$Co(OH)_3 + e = Co(OH)_2 + OH$	+0,17
$Co^{3+} + 3e = Co$	+0,33
$Co^{3+} + e = Co^{2+}$	+1,808
Кремний	
$SiO_3^{2-} + 3H_2O + 4e = Si + 6OH^{-}$	-1,7
$SiF_6^{2-} + 4e = Si + 6F^{-}$	-1,2
$SiO_3^{2-} + 6H^+ + 4e = Si + 3H_2O$	-0,455
Лантан	
$La^{3+} + 3e = La$	-2,522
Литий	
$Li^+ + e = Li$	-3,045
Магний	
$Mg(OH)_2 + 2e = Mg + 2OH^-$	-2,69
$Mg^{2+} + 2e = Mg$	-2,363
Марганец	
$Mn (OH)_2 + 2e = Mn + 2OH^-$	-1,56
$Mn^{2+} + 2e = Mn$	-1,179
$Mn(OH)_2 + 2H^+ + 2e = Mn + 2H_2O$	-0,727
$MnO_2 + 2H_2O + 2e = Mn(OH)_2 + 2OH^2$	-0,05
$MnO_4^- + 4H_2O + 5e = Mn(OH)_2 + 6OH^-$	+0,34
$MnO_4^- + e = MnO_4^{-2}$	+0,564
$MnO_4^- + 2H_2O + 3e = MnO_2 + 4OH^-$	+0,600
$MnO_4^{2-} + 2H_2O + 2e = MnO_2 + 4OH^2$	+0,620

Электродный процесс	E ⁰ , B
$MnO_2 + 4H^+ + e = Mn^{3+} + 2H_2O$	+0,950
$MnO_2 + 4H^+ + 2e = Mn^{2+} + 2H_2O$	+1,228
$MnO_4^- + 8H^+ + 5e = Mn^{2+} + 4H_2O$	+1,507
$Mn^{3+} + e = Mn^{2+}$	+1,509
$MnO_4^- + 4H^+ + 3e = MnO_2 + 2H_2O$	+1,692
$MnO_4^{2-} + 4H^+ + 2e = MnO_2 + 2H_2O$	+2,257
Медь	
$[Cu(CN)_2]^- + e = Cu + 2CN^-$	-0,43
$[Cu(NH_3)_2]^+ + e = Cu + 2NH_3$	-0,12
$[Cu(NH_3)_4]^{2+} + 2e = Cu + 4NH_3$	-0,07
$[Cu(NH_3)_4]^{2+} + 4H_2O + 2e = Cu + 4NH_4OH$	-0,04
$Cu^{2+} + e = Cu^{+}$	+0,153
$2Cu^{2+} + H_2O + 2e = Cu_2O + 2H^+$	+0,203
$Cu^{2+} + 2e = Cu$	+0,337
$Cu^+ + e = Cu$	+0,520
Молибден	TEN THE TANK SHEET
$MoO_4^{2-} + 4H_2O + 6e = Mo + 8OH^{-}$	-1,05
$Mo^{3+} + 3e = Mo$	-0,200
$MoO_2 + 4H^+ + 4e = Mo + 2H_2O$	-0,072
$MoO_4^{2-} + 8H^+ + 6e = Mo + 4H_2O$	+0,154
$MoO_4^{2-} + 4H^+ + 2e = MoO_2 + 2H_2O$	+0,606
Мышьяк	THE RESERVE OF THE SECOND
$AsO_4^{3}+2H_2O+2e=AsO_2^{-}+4OH^{-}$	-0,658
$H_3AsO_4 + 2H^+ + 2e = HAsO_2 + 2H_2O$	+0,560
Натрий	ALCOHOL STATE OF THE STATE OF T
$Na^+ + e = Na$	-2,714
Никель	The second of the second of
$Ni(OH)_2+2e = Ni+2OH$	-0,72
$[Ni(NH_3)_6]^{2+} + 2e = Ni + 6NH_3$	-0,49
$Ni^{2+}+2e = Ni$	-0,25
$Ni(OH)_3 + H^+ + e = Ni(OH)_2 + H_2O$	+1,02

Электродный процесс	E^0 , B
Олово	
$[Sn(OH)_4]^{2^2} + 2e = Sn + 4OH^2$	-0,910
$Sn^{2+} + 2e = Sn$	-0,136
$Sn^{4+} + 4e = Sn$	+0,100
$Sn^{4+} + 2e = Sn^{2+}$	+0,151
Платина	RANGE TO A SIDE OF A SHOOL
$PtBr_4^{2-} + 2e = Pt + 4Br^{-}$	+0,58
$PtCl_6^{2-} + 2e = PtCl_4^{2-} + 2CI^{-}$	+0,72
$PtCl_4^{2-} + 2e = Pt + 4C1^{-}$	+0,73
$Pt^{2+} + 2e = Pt$	+1,188
Рений	
$ReO_4^- + 4H_2O + 7e = Re + 8OH^-$	-0,584
$Re^{3+} + 3e = Re$	+0,3
$ReO_4^- + 8H^+ + 4e = Re^{3+} + 4H_2O$	+0,422
Ртуть	W31-14-112
$[Hg(CN)_4]^{2-} + 2e = Hg + 4CN^{-}$	-0,37
$[Hgl_4]^{2^-} + 2e = Hg + 4l^-$	-0,04
$[HgBr_4]^{2} + 2e = Hg + 4Br^{-}$	+0,21
$Hg_2Cl_2 + 2e = 2Hg + 2C1^-$	+0,268
$[HgCl_4]^{2} + 2e = Hg + 4C1^{-1}$	+0,48
$Hg_2^{2+} + 2e = 2Hg$	+0,788
$Hg^{2+}+2e=Hg$	+0,854
$2Hg^{2+} + 2e = Hg_2^{2+}$	+0,920
Рубидий	Charles Willelman
$Rb^++e=Rb$	-2,925
Свинец	
$PbSO_4 + 2e = Pb + SO_4^{2}$	-0,36
$Pb^{2+} + 2e = Pb$	-0,126
$PbO_3^{2-} + H_2O + 2e = PbO_2^{2-} + 2OH^{-}$	+0,20
$PbO+2H^{+}+2e = Pb + H_2O$	+0,248
$PbO_2 + H_2O + 2e = PbO + 2OH$	+0,28
$PbO_2 + 4H^+ + 2e = Pb^{2+} + 2H_2O$	+1,449
38	

Электродный процесс	E ⁰ , B
$PbO_2 + 4H^+ + SO_4^{2-} + 2e = PbSO_4 + 2H_2O$	+1,68
$Pb^{4+} + 2e = Pb^{2+}$	+1,694
Селен	
$Se + 2H^{+} + 2e = H_{2}Se(x)$	-0,399
$Se + 2H^{+} + 2e = H_{2}Se(r)$	-0,369
$SeO_3^{2} + 3H_2O + 4e = Se + 6OH^{-1}$	-0,366
$SeO_4^{2-} + H_2O + 2e = SeO_3^{2-} + 2OH^{-}$	+0,05
$H_2SeO_3 + 6H^+ + 6e = H_2Se_{(x)} + 3H_2O$	+0,36
$H_2SeO_3 + 4H^+ + 4e = Se + 3H_2O$	+0,74
$SeO_4^{2-} + 2H^+ + 2e = H_2SeO_3 + H_2O$	+1,15
Cepa	
$SO_4^{2-} + H_2O + 2e = SO_3^{2-} + 2OH^{-}$	-0,93
$2SO_4^{2-} + 5H_2O + 8e = S_2O_3^{2-} + 10OH^{-}$	-0,76
$S + 2e = S^{2}$	-0,48
$S_2O_3^{2-} + 6H^+ + 8e = 2S^{2-} + 2H_2O$	-0,006
$SO_4^{2-} + 8H^+ + 8e = S^{2-} + 4H_2O$	+0,149
$SO_4^{2-} + 4H^+ + 2e = SO_2 + 2H_2O$	+0,159
$S + 2H^{+} + 2e = H_2S$	+0,17
$SO_4^{2-} + 2H^+ + 2e = SO_3^{2-} + H_2O$	+0,22
$SO_3^{2-} + 6H^+ + 6e = S^{2-} + 3H_2O$	+0,231
$HSO_4^- + 9H^+ + 8e = H_2S(p) + 4H_2O$	+0,289
$SO_4^{2-} + 10H^+ + 8e = H_2S + 4H_2O$	+0,311
$HSO_4^- + 7H^+ + 6e = S + 4H_2O$	+0,339
$SO_4^{2-} + 8H^+ + 6e = S + 4H_2O$	+0,357
$S_2O_3^{2-} + 6H^+ + 4e = 2S + 3H_2O$	+0,5
$2SO_3^{2-} + 6H^+ + 4e = S_2O_3^{2-} + 3H_2O$	+0,705
$S_2O_8^{2} + 2e = 2SO_4^{2}$	+2,01
Серебро	and the grant of the control of the second
$[Ag(CN)_2]^2 + e = Ag + 2CN^2$	-0,29
$[Ag(S_2O_3)_2]^{3-} + e = Ag + 2S_2O_3^{2-}$	+0,01
$AgCl + e = Ag + Cl^{-}$	+0,222
$[Ag(NH_3)_2]^+ + e = Ag + 2NH_3$	+0,373
$Ag^{+} + e = Ag$	+0,799

Электродный процесс	E^0 , B
Стронций	
$Sr^{2+} + 2e = Sr$	-2,888
Таллий	
$Tl^+ + e = Tl$	-0,344
$Tl^{3+} + 2e = Tl^{+}$	+1,252
Теллур	
$Te + 2e = Te^{2-}$	-1,143
Титан	rings Spiritages (L
$Ti^{2+} + 2e = Ti$	-1,63
$[TiF_6]^{2-} + 4e = Ti + 6F^{-}$	-1,191
$Ti^{4+} + 4e = Ti$	-0,88
$TiO_2 + 4H^+ + 4e = Ti + 2H_2O$	-0,86
38	
$Ti^{3+} + e = Ti^{2+}$	-0,368
$Ti^{4+} + e = Ti^{3+}$	-0,092
Углерод	
$2CO_2 + 2H^+ + 2e = H_2C_2O_4$	-0,49
$CO_2 + 2H^+ + 2e = HCOOH$	-0,2
$CO_2 + 2H^+ + 2e = CO + H_2O$	-0,12
$CO_3^{2-} + 8H^+ + 6e = CH_3OH + 2H_2O$	+0,209
$CO_3^{2-} + 3H^+ + 2e = HCOO^- + H_2O$	+0,227
$2CO_3^{2-} + 4H^+ + 2e = C_2O_4^{2-} + 2H_2O$	+0,441
Фосфор	
$PO_4^{3-} + 2H_2O + 2e = HPO_3^{2-} + 3OH^{-}$	-1,12
$H_3PO_3 + 3H^+ + 3e = P$ (белый) $+ 3H_2O$	-0,502
$H_3PO_3 + 3H^+ + 3e = P$ (красный) $+ 3H_2O$	-0,454
$H_3PO_4 + 5H^+ + 5e = P$ (белый) $+ 4H_2O$	-0,411
$H_3PO_4 + 5H^+ + 5e = P$ (красный) + $4H_2O$	-0,383
$H_3PO_4 + 2H^+ + 2e = H_3PO_3 + H_2O$	-0,276
$P (красный) + 3H^+ + 3e = PH_3$	-0,111
$P (белый) + 3H^+ + 3e = PH_3$	-0,063

Электродный процесс	E ⁰ , B
Фтор	
$F_2O + 2H^+ + 4e = 2F^- + H_2O$	+2,1
$F_2 + 2e = 2F$	+2,87
Хлор	
$ClO_4^- + H_2O + 2e = ClO_3^- + 2OH^-$	+0,36
$2CIO^{-} + 2H_2O + 2e = Cl_2 + 4OH^{-}$	+0,4
$C1O_4^- + 4H_2O + 8e = C1^- + 8OH^-$	+0,56
$C1O_3^- + 3H_2O + 6e = C1^- + 6OH^-$	+0,63
$C10^{-} + H_2O + 2e = Cl^{-} + 2OH^{-}$	+0,88
$ClO_4^- + 2H^+ + 2e = ClO_3^- + H_2O$	+1,189
$Cl_2 + 2e = 2C1^{-1}$	+1,359
$C1O_4^- + 8H^+ + 8e = Cl^- + 4H_2O$	+1,38
$2C1O_4^- + 16H^+ + 14e = Cl_2 + 8H_2O$	+1,39
$C1O_3^- + 6H^+ + 6e = Cl^- + 3H_2O$	+1,451
$2C1O_3^- + 12H^+ + 10e = Cl_2 + 6H_2O$	+1,47
$2HC1O + 2H^{+} + 2e = Cl_2 + 2H_2O$	+1,63
Хром	
$CrO_2^- + 2H_2O + 3e = Cr + 4OH^-$	-1,2
$Cr^{2+} + 2e = Cr$	-0,913
$Cr^{3+} + 3e = Cr$	-0,744
$Cr^{3+} + e = Cr^{2+}$	-0,407
$CrO_2^- + 4H^+ + 3e = Cr + 2H_2O$	-0,213
$CrO_4^{2-} + 4H_2O + 3e = Cr(OH)_3 + 5OH^2$	-0,13
$Cr_2O_7^{2-} + 14H^+ + 12e = 2Cr + 7H_2O$	+0,294
$CrO_4^{2-} + 8H^+ + 6e = Cr + 4H_2O$	+0,366
$CrO_4^{2-} + 4H^+ + 3e = CrO_2^{-} + 2H_2O$	+0,945
$Cr_2O_7^2 + 14H^+ + 6e = 2Cr^{3+} + 7H_2O$	+1,333
$CrO_4^{2-} + 8H^+ + 3e = Cr^{3+} + 4H_2O$	+1,477
Цезий	
$Cs^+ + e = Cs$	-2,923
Цинк	
$[Zn(CN)_4]^{2^2} + 2e = Zn + 4CN^2$	-1,26

Окончание табл. 8

Электродный процесс	E ⁰ , B
$ZnO_2^{2-} + 2H_2O + 2e = Zn + 4OH^{-}$	-1,216
$[Zn(OH)_4]^{2-} + 2e = Zn + 4OH^{-}$	-1,216
$[Zn(NH_3)_4]^{2+} + 2e = Zn + 4NH_3$	-1,04
$Zn^{2+} + 2e = Zn$	-0,763
$ZnO_2^{2-} + 4H^+ + 2e = Zn + 2H_2O$	+0,441

23. ПЕРЕНАПРЯЖЕНИЕ ВОДОРОДА (η_H) И КИСЛОРОДА (η_0) НА РАЗЛИЧНЫХ ЭЛЕКТРОДАХ (ПРИ ПЛОТНОСТИ ТОКА 1 A/cm², $t=25^0$ C, В ПОДКИСЛЕННЫХ РАСТВОРАХ)

Материал электрода	η _н ,В	η_0 , B
Pb	-1,56	1,44
Hg	-1,41	1,62
Cd	-1,4	0,45
Zn	-1,24	1,75
Sn	-1,2	1,21
Al	-1,00	
С (графит)	-0,78	1,17
Ag	-0,95	0,97
Cu	-0,87	1,05
Fe	-0,7	1,07
Ni	-0,63	1,09
Co	-0,62	
Au	-0,4	0,85
Pd ,	-0,24	0,43
Pt	-0,1	0,7

24. ИНТЕРВАЛЫ ПЕРЕХОДА ОКРАСКИ ВАЖНЕЙШИХ КИСЛОТНО-ОСНОВНЫХ ИНДИКАТОРОВ

Индикатор	Окраска до перехода	рН перехода	Окраска после перехода
Тимоловый синий	Красная желтая	1,2-2,8 8,0-9,9	Желтая синяя
Метиловый оранжевый	Красная	3,0-4,4	Желто- оранжевая
Метиловый красный	Красная	4,3-6,2	Желтая
Лакмус	Красная	5,0-8,0	Синяя
Феноловый красный	Желтая	6,8-8,4	Красная
Фенолфталеин	Бесцветная	8,1-9,8	Красная
Ализариновый желтый	Бледно-желтая	10,0-12,0	Желто- коричневая

25. ОСНОВНЫЕ ФИЗИЧЕСКИЕ ПОСТОЯННЫЕ

Значение
6,02·10 ²³ моль ⁻¹
9,65·10 ⁴ Кл
8,31 Дж/моль·K
6.62·10 ⁻³⁴ Дж·с
1,09·10 ⁷ m ⁻¹
2,997925 · 10 ⁸ м/с

26. МАТЕМАТИЧЕСКИЕ ДЕЙСТВИЯ

1. Возведение в степень и извлечения корня.

При возведении в степень числа, представленного в степенной форме, показатель его степени умножается на степень, в которую возводится число:

$$(1,2\cdot 10^5)^3 = 1,2^3\cdot 10^{5\cdot 3} = 1,7\cdot 10^{15};$$

При извлечении корня из числа, представленного в степенной форме, показатель его степени делится на показатель корня:

$$\sqrt[3]{2,5\cdot10^6} = \sqrt[3]{2,5}\cdot10^{6/3} = 1,3\cdot10^2$$
.

Если показатель степени числа не делится на показатель корня без остатка, то подкоренное число следует преобразовать, например:

$$\sqrt{0.4 \cdot 10^5} = \sqrt{4 \cdot 10^4} = 2 \cdot 10^2$$

$$\sqrt[3]{0.8 \cdot 10^{-17}} = \sqrt[3]{8 \cdot 10^{-18}} = 2 \cdot 10^{-6}$$

2. Логарифмическое представление численных величин.

Десятичным логарифмом по основанию 10 (сокращенно lg) называется показатель степени, в которую следует возвести 10, чтобы получить заданное число:

$$lgx = y$$
.

Например, $lg10^5=5$, lg1=0, $lg10^{-2}=-2$. Действие, обратное логарифмированию, называется антилогарифмированием:

$$x=10^{y}$$
.

Например, lgx = 2, следовательно, $x=10^2=100$.

2.1 Умножение и деление:

$$\lg ab = \lg a + \lg b$$

 $\lg a/b = \lg a - \lg b$

Определяя логарифм числа, меньшего 1 или большего 10, нужно сначала записать это число в стандартном степенном представлении:

$$lg450 = lg(4,5 \cdot 10^2) = lg4,5 + lg10^2 = 0,654 + 2 = 2,653$$

 $lg0,0673 = lg(6,73 \cdot 10^{-2}) = lg6,73 + lg10^{-2} = 0,828 - 2 = -1,172.$

2.2 Возведение в степень и извлечение корня

$$\lg a^n = n(\lg a)$$

$$\lg a^{1/n} = 1/n \lg a.$$

Натуральным логарифмом числа по основанию е (обозначается \ln) называется показатель степени, в которую следует возвести число e = 2,71828..., чтобы получить заданное число. Между десятичным и натуральным логарифмом существует соотношение:

$$ln a = 2,303 lg a$$
.

3. Квадратные уравнения вида $ax^2 + ex + c = 0$ имеют два

решения:
$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

25. ОГЛАВЛЕНИЕ

	Стр
1. Периодическая система химических элементов	3
2. Энергия ионизации и сродство к электрону	4
3. Относительная электроотрицательность	5
4. Зависимость орбитальных радиусов атомов от атомного	6
номера элемента	7
5. Периодическая зависимость сродства к электрону и первой	/
энергии ионизации атомов от атомного номера элемента	7
6. Сведения о некоторых элементарных частицах	8-9
7. Расположение валентных о-электронных пар центрального	0-9
атома А и пространственная конфигурация молекул AB _n	10
8. Строение и электрические моменты диполей (µ) некоторых	10
молекул	11
9. Длина и энергия химической связи	11
10. Параметры химической связи двухатомных молекул	11
11. Типы межмолекулярных взаимодействий	12
12. Вклад отдельных составляющих в полную энергию	12
межмолекулярного взаимодействия	12
13. Термодинамические константы некоторых веществ	13
14. Константы диссоциации кислот в водных растворах	23 25
15. Константы диссоциации неорганических оснований в	23
водных растворах	26
16. Диаграммы расщепления <i>d</i> -орбиталей в октаэдрическом и	20
тетраэдрическом полях лигандов	27
17. Константы нестойкости комплексных ионов	28
18. Длины волн спектра и соответствующие им окраски	29
19. Растворимость неорганических веществ в воде при	27
комнатной температуре	30
20. Произведение растворимости труднорастворимых в воде	30
соединений	31
21. Стандартные потенциалы металлических электродов	31
(T=298K)	32
22. Стандартные электродные потенциалы в водных растворах.	42
23. Перенапряжение водорода (η_H) и кислорода (η_O) на различных электродах при плотности тока 1 А/см ² , $t=25^{\circ}$ С, в	42
подкисленных растворах	43
24. Интервалы перехода окраски важнейших кислотно-	, 43
основных индикаторов	43
25. Основные физические постоянные	44
26. Математические действия	77